Генерування випадковості чисел
Розподіл Пуасона відноситься до числа дискретних (тобто таких, при яких зміна може приймати тільки цілочисельні значення, включаючи нуль).
4.Нормальний розподіл.
Нормальний розподіл або розподіл Гауса є найбільш важливим в теорії ймовірностей і математичній статистиці. Цей розподіл є простим в математичному трактуванні. Тому регресійний або варіаційний аналіз, базуючись на тому, що функція щільності має нормальний характер.
Нормальний закон розподілу описує широкий клас явищ, наприклад цифрові результати різноманітних тестів, термін придатності речей широкого вжитку розсіювання куль довкола мішені і т.ін.
5.Гама розподіл та розподіл Ерланга.
Розподіл Ерланга сумування незалежних однаково розподілених експоненціальних випадкових величин. Він є частковим випадком гама-розподілу, тому все що стосується функції густини, інтергустації і зауважень відносно гама-розподілу, справедливо також і для розподілу Ерланга. Цей розподіл широко використовується в теорії масового обслуговування.
Гама - розподіл – це узагальнення розподілу Ерланга для випадку, коли число умовних експоненціальних величин не є цілим. Гама – розподілена випадкова величина може приймати значення від нуля до безмежності. Цей розподіл виводять із експоненціального аналогічно як нормальний виводять із рівномірного.
Гама розподіл можна інтергустувати як квадратів нормально розділених випадкових змінних, тобто як а-розподіл. Отже, розподіл Ерланга, експоненціальний розподіл є частковими випадками гама-розподілу.
Гама-розподіл є одним з найбільш використовуваних видів безперервних розподілів яким може скористатися аналітик в імітаційному дослідженні. Якщо величини, які характеризують яке-небудь випадкове явище, не можуть приймати від’ємних значень, то це явище найбільш вдало може імітуватися з допомогою гама-розподілу. Цей розподіл описується двома параметрами , - характеризує форму, а - масштаб розподілу.
При зміні цих параметрів щільність гама-рпозподілу може набувати найрізноманітніших форм.
щільність імовірність
математичне сподівання
Генерування випадкових чисел
Функціонування елементів системи, що підлягають впливу випадкових дій задається генераторами випадкових чисел, реалізованих програмними методами, які виробляють псевдовипрадкові послідовності.
Псевдовипадковими послідовностями назив. досить повно детерміновані числа, що володіють статистичними властивостями випадкових чисел, які визначаються шляхом їх перевірки спеціальними тестам, а також періодичністю, тобто повторюваністю через визначені проміжки часу. При моделюванні використовуються інтервали послідовностей псевдовипадкових чисел, в яких немає ні одного числа, яке зустрічається більше одного разу.
Методи генерування випадкових чисел:
1)метод квадратів;
2)метод добутків;