Абсолютна величина дiсного числа. Властивостi абсолютних величин
Функція f(х) називається парною, якщо для х із області визначення функції f(-х)= f(х) .
Графік парної функції симетричний відносно осі OY.
Функція f(х) називається непарною, якщо для х із області визначення функції f(-х)= -f(х) . Графік непарної функції симметричен відносно початку координат.
в) періодичність
Функція f(х) називається періодичною з періодом l, якщо для любих х із її області визначення справедливе рівняння f(х) = f(х l).
Прикладом періодичних функцій є тригонометрічні функції: sinx, cosx, tgx, ctgx.
Способи завдання функції:
1.Табличний
2.Аналітичний
3.Графічний
4.За допогою функціональної шкали.
Складна функція.Неявно задана ф-я.
Якщо функція f відображає множину Е вЕ1,а функція F відображає множину Е1 в множину Е2 , то функцєію Z=F(f(х)) називають функцією від функції,або складною функцією,або суперпозицією f i F.
Можлива складна функція, в утворенні котрої беруть участь n функцій:
z= F1(F2(F3(…(Fn(x))…))).
Ми розглядали функції від однієї змінної. Але можно розглядати також функції двох трьох і взагалі n змінних.
Функція від однієї змінної може бути задана неявним засобом за допомогою рівності F(x,y)=0, (*)
де F – є функція від двох змінних x і y.Таким чином, Е є множина всіх чисел х, кожному із котрих відповідає непуста множина У. Цим визначена на множені Е деяка функція У= (х) від х, взагалі кажучі багатозначна.
В такому випадку кажуть що функція визначена неявно за допомогою рівності (*). Для неї, очевидно, виконується тотожність:
F(x, (х))0
По аналогії можливо також визначити функцію х=(у) від змінної У, визначену неявно за допомогою рівності (*). Для неї виконується тотожність:
F( (у),y)0.
Функцію х=(у) називають зворотньою по відношенню до функції у=(х).