Абсолютна величина дiсного числа. Властивостi абсолютних величин
ПИТАННЯ.
1.Дiйснi числа. Абсолютна величина (модуль) дiйсного числа.Властивостi
абсолютних величин.
2.Сталi i змiннi величини.Iнтервали окрестнiсть.
3.Означення функцiï ,область означення,множина значень функцiï.Способи
завдання функцiï.Складна функцiя.
4.Парнiсть,непарнiсть функцiï.Зростаючи i спадаючи функцiï.Обмеженi функцiï.
Периодичнi функцiï.
5.Класифiкацiя функцiй.
6.Перетворення грификiв.
ОЗНАЧЕННЯ.Абсолютною величиною (або модулем) дiйсного числа x (позначається |x|) називається невiд’ємне дiйсне число,задовольняюче умовам:
| Х, якщо Х>0
|X|= <-Х,якщо Х<0
| 0,якщо Х=0
Властивостi абсолютних величин.
1.Абсолютна величина алгебраїчної суми декiлькох дiйсних чисел на бiльше суми алгебраїчних величин доданкiв:
|х+y||х|+|у|
ДОВЕДЕННЯ.
Нехай х+у0,тодi |х+у|=х+у|х|+|у| (поскiльки х|х| i у|у|)
Нехай х+у<0,тодi |х+у|= -(х+у)= -х+(-у)|х|+|у| що i п.б.д.
Приведене доведення поширюється на будь-яке число доданкiв.
2.Абсолютна величина рiзницi не менш нiж рiзниця абсолютних величин зменьшуваного i вiд’ємника:
|х-у||х|-|у|, |х|>|у|
ДОВЕДЕННЯ:
Покладемо х-у=z,тодi х=у+z i по доведеному в пунктi 1