Зворотний зв'язок

Властивості математичного сподівання і дисперсії

Властивості математичного сподівання:

1)Математичне сподівання постійної величини дорівнює цій постійній величині, тобто:

М(С)=С

2)Постійний множник можна виносити за знак математичного сподівання

M(kx)=kM(x)

3)Математичне сподівання суми скінченої кількості випадкових величин дорівнює сумі математичних сподівань:

M(x+y)=M(x)+M(y)

4)Математичне сподівання добутку випадкових величин дорівнює добутку математичних сподівань цих величин:

5)Якщо всі значення випадкової величини X зменшити (збільшити) на одне й те саме число C , то математичне сподівання зменшиться (збільшиться) на те саме число:

M(X–C)=M(X)–C

Наслідок:

Математичне сподівання відхилення випадкової величини X , від її математичного сподівання дорівнює 0

Математичне сподівання дискретної величини

Приклад:

У парку організована безпрограшна лотерея. Маємо 1000 виграшів, з них 400 по 10 коп.,300 – по 20 коп., 200 – по 1 грн.,100 – по 2грн. Середній розмір виграшу для відвідувача парка, що придбав один квиток дорівнює загальній сумі виграшу, що поділена на загальну кількість виграшів.

Загальна сума дорівнює:

Середній виграш дорівнює

З іншого боку, якщо розглянемо закон розподілу

X0,10,212

P0,40,30,20,1

то таку ж величину отримаємо при знаходженні суми добутку значень випадкових величин на відповідні ймовірності

М(х)=0,10,4+0,30,2+20,1=0,5

Математичним сподіванням дискретної випадкової величини називається сума добутку всіх її значень на відповідні їм ймовірності:

Дисперсія дискретної випадкової величини.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат