Зворотний зв'язок

Системи диференціальних рівнянь

Загальна теорія

Співвідношення вигляду

називається системою -звичайних диференціальних рівнянь першого порядку.

Якщо система розв’язана відносно похідних і має вигляд

то вона називається системою в нормальній формі.

Визначення 1. Розв’язком системи диференціальних рівнянь називається набір неперервно диференційованих функцій тотожно задовольняючих кожному з рівнянь системи.

У загальному випадку розв’язок системи залежить від - довільних сталих і має вигляд і задача Коші для системи звичайних диференціальних рівнянь першого порядку ставиться в такий спосіб. Потрібно знайти розв’язок, що задовольняє початковим умовам (умовам Коші): .

Визначення 2. Розв’язок називається загальним, якщо за рахунок вибору сталих можна розв’язати довільну задачу Коші.

Для систем звичайних диференціальних рівнянь досить важливим є поняття інтеграла системи. В залежності від гладкості (тобто диференційованості) можна розглядати два визначення інтеграла.

Визначення 3. 1. Функція стала уздовж розв’язків системи, називається інтегралом системи.

2. Функція повна похідна, якої в силу системи тотожно дорівнює нулю, називається інтегралом системи.

Для лінійних рівнянь існує поняття лінійної залежності і незалежності розв’язків. Для нелінійних рівнянь (систем рівнянь) аналогічним поняттям є функціональна незалежність.

Визначення 4. Інтеграли , , , … , називаються функціонально незалежними, якщо не існує функції - змінних такої, що

Теорема. Для того щоб інтеграли

, ,… системи звичайних диференціальних рівнянь були функціонально незалежними, необхідно і достатньо, щоб визначник Якобі був відмінний від тотожного нуля, тобто

Визначення 5. Якщо інтеграл системи диференціальних рівнянь, то рівність називається першим інтегралом.

Визначення 6. Сукупність - функціонально незалежних інтегралів називається загальним інтегралом системи диференціальних рівнянь.

Власне кажучи загальний інтеграл - це загальний розв’язок системи диференціальних рівнянь у неявному вигляді.

Теорема. (існування та єдиності розв’язку задачі Коші). Щоб система диференціальних рівнянь, розв’язаних відносно похідної, мала єдиний розв’язок, що задовольняє умовам Коші: досить, щоб:

1) функції були неперервними по змінним в околі точки ;

2) функції задовольняли умові Ліпшиця по аргументах у тому ж околі.

Зауваження. Умова Ліпшиця можна замінити більш грубою, але умовою, що перевіряється легше, існування обмежених частинних похідних, тобто


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат