ДИФЕРЕНЦІАЛ ФУНКЦІЇ
Нехай функція y = f (x) має в даній точці похідну
Помноживши обидві частини (2) на Ах, дістанемо:
Перший з доданків лінійний відносно х і при х 0 та f'(x0) 0 є нескінченно малою одного порядку з х, тому що:
Другий доданок - нескінченно мала вищого порядку, ніж х, тому що:
Цей доданок не є лінійним відносно х, тобто містить х в степені, вищому від одиниці.
Тоді доданок f'(x)• x називається головною частиною суми двох нескінченно малих. У даному випадку це головна частина приросту функції у і називається диференціалом функції.
Диференціал функції визначається добутком похідної на приріст незалежної змінної і позначається dy або df(x).
Отже, маємо
dy = f'(x) • x(4)
Диференціалом dy називають також диференціал першого порядку. З виразу (4) бачимо що диференціал функції є функція двох незалежних змінних х і х. Якщо y = х, то у' = х' =1, тому dy = dx• x. Тобто диференціал незалежної змінної ототожнюється з її приростом, тобто диференціал незалежної змінної дорівнює приросту незалежної змінної.
На цій підставі для будь-якої диференційованої функції y = f (x) можемо формулу (4) записати так:
dy = f' (x) dx
Останній вираз називатимемо канонічним виразом диференціала функції y = f (x). З (5) діленням на dх (dх 0), безпосередньо знаходимо:
Виходить, що похідну можна розглядати як відношення двох диференціалів. Тепер у позначенні похідної можемо надавати dy і dx самостійного значення:
Вираз (3) можемо записати ще так:
де Якщо х 0, то й отже, і 0.
Зауважимо, що коли в точці х0 похідна то перший доданок f формулі (3) дорівнює нулю і вже не є головною частиною приросту y. Але і в цьому випадку диференціал dy знаходять за формулою (5).
Геометричний зміст диференціалу зрозумілий з рисунка.
Маємо PN = y, QN = MN tg = хf'(x) = f´(x) dx = dy.
Отже, маємо функції f (x) при заданих значеннях x0 і х дорівнюють приросту ординати дотичної до кривої y = f (x) в точці х0 . Приріст функції у при цьому дорівнює приросту ординати кривої. Таким чином, заміна приросту функції на її диференціал геометричне означає заміну ординати АР кривої ординатою дотичної AQ. Зрозуміло, що така заміна доцільна для достатньо малих значень x.
Ці правила легко одержати із відповідних правил для похідних. Доведемо, наприклад, два останніх:
Інваріантність форми диференціала.