Зворотний зв'язок

Густина (щільність) розподілу імовірностей одновимірної і багатовимірної випадкових величин

Зауваження: функція розподілу , як і всяка імовірність, є величина безрозмірна. Розмірність щільності розподілу обернена розмірності випадкової величини.

Приклад.

Знайти випадкової величини, розподіленої за нормальним законом розподілу.

Вводимо заміну

— інтегральна формула Муавра–Лапласа.

Функція розподілу випадкової величини.

Нехай дискретна випадкова величина задана законом розподілу. Розглянемо подію, яка полягає в тому, що випадкова величина Y прийме яке–небудь значення менше будь–якого числа X. Ця подія має певну ймовірність.

xiX1X2…Xn

PiP1P2…Pn

Позначимо

При зміні X будуть змінюватися і ймовірності. Отже F(x) можна розглядати як функцію змінної величини X.

Функцією розподілу випадкової величини Y називається функція F(x), яка виражає для кожного X ймовірність того, що Y прийме яке-небудь значення менше заданого.

F(x) – постійна на інтервалах та має скачки в точках, що відповідають її значенням.

b.Властивості функції розподілу.

Теорема 1. Ймовірність того, що випадкова величина Y прийме значення , що належить відрізку [ ], дорівнює прирощенню її функції розподілу на цій ділянці, тобто:

Теорема 2. Функція розподілу будь–якої випадкової величини являє собою неспадну функцію і змінюється від 0 до 1, при зміні x від , тобто:

Приклад:

Команда нараховує 2 стрільці, кількість балів, що вибиваються кожним з них після одного пострілу, являють собою випадкові величини X1 та X2 , які характеризуються наступними законами розподілу:

Число балів x1345

P10,30,40,3

Число балів x212345

P20,10,10,10,20,5

Причому результати пострілів одного з них не впливають на результати іншого.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат