Зворотний зв'язок

Про систему задач для вивчення інтеграла

Система задач для вивчення первісної та інтеграла в навчальному посібнику (1) недостатньо досконала. Завдання тут в основному зводяться до обчислення площ фігур (№1022-1027, 1037-1042, 1081-1087) і інтеграла (1028-1036, 1071-1080), тобто, так як і в задачниках з математичного аналізу для втузів, мають тренувальний характер. Між тим відомо, що різноманітність задач допомагає краще засвоїти вивчаюче поняття, його різні прояви. До того ж у запропонованих в (1) задачах недостатньо використовуються раніше засвоєні знання, поняття інтеграла тим самим немов ізолюється від іншого курсу алгебри та початків аналізу, при розв’язуванні задач не закріпляються раніше здобуті знання.

В методичній літературі є деякі спроби спростити систему вправ для вивчення первісної та інтеграла. Так, наведені деякі вправи у збірнику задач (3), але в більшості вони важкі для учнів XI класу й іноді далеко виходять за рамки шкільної програми. Деякі цікаві і змістовні вправи є в (4), (2), (5), але тут поміщені тільки деякі задачі.

В цій статті пропонуються задачі, для розв’язку яких крім знань про інтеграл застосовуються знання, уміння і навички з інших розділів алгебри і початків аналізу. При цьому розширюється клас функцій, інтеграли від яких можуть бути обчисленні учнями XI класу, досягається необхідна різноманітність задач, піднімається зацікавленість учнів у вивченні цього розділу програми.

Відомо, що міцні, стійкі і гнучкі вміння формуються тоді, коли вони застосовуються разом із раніше здобутими уміннями і навичками. Саме таким чином знову сформовані уміння включаються у систему знань і умінь учнів. До того ж розв’язування задач, які потребують застосування раніше отриманих знань, істотно допомагає закріпленню вивченого і сприяє формуванню важливого вміння застосовувати знання в різноманітних ситуаціях.

На уроках у XI класі будуть корисними задачі, в яких знаходженню первісної (обчисленню інтеграла) передувало б спрощення або перетворення формули, що задає функцію. Такі наступні задачі.

Вказівка: В в) і д) потрібно скористатися визначенням модуля, в г) і л) застосувати рівність . Для перетворення підінтегральної функції в е) потрібно використати рівність . В ж) до результату приводить виділення цілої частини дробу. Інтеграл и) обчислюється двічі застосувавши тотожність .

3*. Перетворивши підінтегральну функцію, обчисліть інтеграл:

Додаткового часу, як і додаткових завдань, для розгляду наведених задач фактично не потрібно: їхній розв’язок потрібно зв’язати з повторенням.

Можна пропонувати і такі задачі на обчислення інтегралів, які потребують більш складніших перетворень тригонометричних виразів.

4*. Обчисліть інтеграл:

Розв’язок задачі 4 (д):

Задачі 3–4 корисно розглядати на позакласних або факультативних заняттях.

Принесе користь розв’язування і наступних задач.

5. Обчисліть, попередньо перетворивши підінтегральну функцію:

До цього часу розглядалися вправи, в яких потрібно було обчислити інтеграл, використовуючи для цього відомості із попереднього курсу алгебри і математичного аналізу. Але і задачам, в яких інтеграл відіграє допоміжну роль, потрібно відвести час на уроках або позакласних заняттях. Ось приклади таких вправ.

6. Розв’яжіть рівняння:

7. Знайдіть всі значення такі, що і є коренем рівняння:


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат