Невласні інтеграли
Дослідити на збіжність інтеграли:
а) ;
а) Оскільки :
і інтеграл збігається, то за теоремою і заданий інтеграл також збігається.
б) Цей інтеграл розбігається, бо :
і інтеграл розбігається.
Теорема 2. Якщо існує границя
, ,
то інтеграли (56) і (57) або одночасно обидва збігаються, або одночасно розбігаються.
Ця ознака іноді виявляється зручнішою, ніж теорема 1, бо не потребує перевірки нерівності 0 £ f(x) ≤ g(х).
Приклад
Дослідити на збіжність інтеграл
Оскільки інтеграл збігається і
то заданий інтеграл також збігається.
В теоремах 1 і 2 розглядались невласні інтеграли від невід'ємних функцій. У випадку, коли підінтегральна функція є знакозмінною, справедлива така теорема.
Теорема 3. Якщо інтеграл збігається, то збігається й інтеграл .
Приклад
Дослідити на збіжність інтеграл .
Тут підінтегральна функція знакозмінна. Оскільки
то заданий інтеграл збігається.
Слід зауважити, що із збіжності інтеграла не випливає, взагалі кажучи, збіжність інтеграла . Ця обставина виправдовує такі означення.
Якщо разом з інтегралом збігається й інтеграл , то інтеграл називають абсолютно збіжним, а функцію f(x) — абсолютно інтегровною на проміжку [а; +∞).
Якщо інтеграл збігається, а інтеграл розбігається, то інтеграл називають умовно (або неабсолютно) збіжним.
Тепер теорему 3 можна перефразувати так: абсолютно збіжний інтеграл збігається .Отже, для знакозмінної функції викладені тут міркування дають змогу встановити лише абсолютну збіжність інтеграла. Якщо ж невласний інтеграл збігається умовно, то застосовують більш глибокі ознаки збіжності [II].