Зворотний зв'язок

Постановка задачі інтерполяції функції

За візьмемо систему функцій {1,x,x2,…, xn,…}. На довільному відрізку при фіксованому n функції 1,x,x2,…, xn є лінійно незалежні і визначник є визначником Вандермонда. А так як за припущенням xi  xj, тоІз (5) та (6) випливає, що - многочлен n-го степеня, який перетворюється в нуль в точках в x0, x1,…, xi-1, xi+1,…, xn і рівний 1 в точці x0, тобто

і

.

Звідки маємо:

Підставивши значення Фі(х) в (5) отримаємо інтерполяційний многочлен у формі Лагранжа

Отримаємо тепер формулу для залишкового члена інтерполяційного многочлена у виді Лагранжа.

Теорема 2. Нехай f(x)  C(n) [a,b] і існує f(n+1) (x). Тоді для довільного х  [,] має місце наступна форма залишкового члена

(7)

де

Зауваження 2. З формули залишкового члена (7) випливає, що інтерполяційний многочлен у формі Лагранжа є точним для многочленів степеня n.

§3. Вимоги до обчислювальних алгоритмів

Наведені вище формули, що визначають N-точкову апроксимацію, громіздкі і мало придатні для розвязування обчислювальних задач. Визначимо коротко ті вимоги, котрі ставляться перед обчислювальним алгоритмом. Чисельні алгоритми для раціональних апроксимацій можна поділити на ті, за допомогою яких розвязують проблему коефіцієнтів і ті, за допомогою яких розвязують проблему значень. Проблема коефіцієнтів полягає у визначенні значень коефіцієнтів на підставі яких формується інтерполяційна функція. Проблема значень полягає в обчисленні значення інтерполяційної функції у вказаній наперед точці z, коли не потрібні проміжкові обчислення коефіцієнтів. Наприклад, метод відомий під назвою -алгоритма розвязує проблему значень для апроксимацій Паде, оскільки він не звязаний з проміжковим обчисленням коефіцієнтів. Описаний нижче модифікований алгоритм Течера-Тьюкі, котрий представляє раціональну апроксимацію в вигляді неперервного дробу, дає вирішення проблеми коефіцієнтів. Якщо потрібно знайти деяку таблицю значень інтерполюючої раціональної функції, то часто вигідніше розвязати спочатку проблему коефіцієнтів і потім обчислювати значення апроксимації в різних точках. Якщо потрібно обчислити одне значення, то іноді зручніше не звертатися до проміжкової задачі обчислення коефіцієнтів. Та на практиці обчислення поліномів і неперервних дробів є доволі швидкою процедурою і тому проблема коефіцієнтів особливо важлива. Відмітимо, що представлення інтерполюючої функції в виді неперервного дробу підвищує ефективність обчислень у порівнянні з використанням поліноміальних відношень, які характерні для апроксимацій Паде.

Важливо і бажано, щоб застосовувані методи коректно працювали у випадку наявності кратних вузлів інтерполяції. Іншою бажаною ознакою чисельних методів раціональної апроксимації є надійність. Не завжди існує раціональна функція певного виду, що задовольняє накладеним умовам інтерполяції. Надійний метод апроксимації має вказати, що задача не має розвязку. Чисельний алгоритм повинен розрізняти задачі що мають і не мають розвязків з врахуванням помилок представлення та округлення. Аналіз цього питання приводить нас до поняття стійкості алгоритму, яке тісно звязане з поняттям надійності. Алгоритм стійкий, якщо малі зміни початкових даних приводять до невеликих змін результату. Хороший алгоритм раціональної інтерполяції повинен бути в змозі виділити ті випадки, коли початкові дані приводять до нестійкого результату.

Відмітимо, що рекурентні методи знаходження інтерполюючої раціональної функції можуть бути звязані з припущенням, що існують проміжкові апроксимації. У випадку існування потрібної інтерполяції надійний алгоритм повинен спрацьовувати навіть у випадку, коли деякі проміжкові апроксимації вироджені або не існують.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат