Постановка задачі інтерполяції функції
Виберемо в – просторі неперервних на функцій, скінчену або злічену сукупність функцій , таких, що довільна скінчена система їх є лінійно незалежною. На практиці найчастіше використовують такі системи функцій:
, , , де – деяка числова послідовність.
Коефіцієнти в (1) визначимо з умови, що наближуючий агрегат збігається у вузлах інтерполяції із значенням функції, тобто
, i=0,1,…,n(2)
З (1) та (2) випливає, що для знаходження коефіцієнтів отримуємо систему лінійних алгебраїчних рівнянь
і якщо
то при довільних значеннях , i=0,1,…,n система має єдиний розвязок
, (3)
де
(4)
формується з за правилом Крамера.
Означення 5. Система функцій , i=0,1,…,n називається системою Чебишова порядка n, якщо узагальнений многочлен
,
який має більше ніж n коренів на , тотожньо рівний нулеві, тобто для всіх і=0,1,…,n.
Теорема 1. Для того, щоб для довільної функції існував узагальнений інтерполяційний многочлен для будь-якого набору вузлів , і=0,1,…,n, необхідно і досить, щоб була системою функцій Чебишова на . При виконанні цих умов узагальнений інтерполяційний многочлен буде єдиним.
Відомо, що всі три вище наведені сукупності функцій є системами функцій Чебишова на довільному .
Якщо визначник (4) розвити за і-м стовпчиком, то (3) перепишеться у вигляді
де , i,k=0,1,…,n – відповідні алгебраїчні доповнення, і тоді
Якщо згрупувати подібні члени при однакових значеннях, то отримаємо
(5)
Зауваження 1. Функції не залежать від , є лінійними комбінаціями та повністю визначаються через них та вузли інтерполяції
З (2) випливає, що
(6)
§2. Інтерполяційний многочлен у формі Лагранжа