ПРАКТИЧНЕ ЗАНЯТТЯ з математики
в) Поділимо чисельник на знаменник дробу на , а потім скористаємось теоремою про границю суми і частки. Дістанемо
г) Аналогічно попередньому маємо
Оскільки при , а знаменник є нескінченно малою послідовністю, то задана послідовність є нескінченно великою, тобто
У прикладах б) - г) порівняйте старші степені чисельників і знаменників заданих дробів і зробіть висновок відносно одержаних відповідей.
д) У даному випадку маємо різницю двох нескінченно великих послідовностей. Позбавимося ірраціональності в чисельнику, вважаючи, що знаменник дорівнює 1, і застосуємо теорему про зв’язок нескінченно малої і нескінченно великої послідовностей. Матимемо.
е) Поділивши чисельник і знаменник виразу, що стоїть в дужках, на n і скориставшись властивістю степеня, дістанемо
Користуючись теоремою про границю добутку, частки і формули (1), маємо
є) Оскільки , то
. Тоді
ж) Маємо границю послідовності комплексних чисел. Обчислимо границі дійсної та уявної частин цієї послідовності. Оскільки
, то
Вправи для самоперевірки
1. Довести, що:
а) б) в)
2. Обчислити і визначити номер N ( ) такий, що при всіх , коли:
а) б)
Відповідь: а) ; б)
3. Зясувати, чи має границю послідовність , якщо:
а) ;б) ;
в)
Відповідь: а) так; б) так; в) ні.
4. Обчислити границі:
1) 2) 3)
4) 5)
6) 7)