Зворотний зв'язок

ПРАКТИЧНЕ ЗАНЯТТЯ з математики

1. Довести, що . Починаючи з якого n маємо

Виберемо довільне число і покажемо, що існує такий номер N, що для всіх членів послідовності з номерами n > N виконується нерівність

(1)

Для визначення N досить розв’язати нерівність (1) відносно n:

.

Отже, якщо , то нерівність (1) виконується для будь-якого наперед заданого числа . Якщо , то за N беремо цілу частину виразу , тобто N = . А якщо , то за N можна взяти 1 або будь-яке інше натуральне число.

Зокрема, при , N = . Отже, при дістанемо

2. З’ясувати, чи має границю послідовність (xn), якщо:

а) б)

в)

а) Оскільки то послідовність ( ) обмежена. Неважко бачити, що для всіх , тобто ( ) монотонно зростає. Отже, вона має границю.

б) Члени послідовності з парними номерами прямують до 1 при , оскільки . А члени послідовності з непарними номерами прямують до 2 при . Отже, згідно з означенням, послідовність немає границі, тобто є розбіжною.

в) Дана послідовність є добутком нескінченно малої послідовності , оскільки , і обмеженої послідовності , тому що . Тоді за властивістю 2) задана послідовність має границю, що дорівнює 0.

3. Обчислити границі:

а) б)

в) г)

д) ;е)

є)

ж)

а) скористаємось теоремою про границю двох послідовностей. Неважко побачити, що границя першого доданка дорівнює 0, а другий доданок є добутком нескінченно малої послідовності на обмежену послідовність , тому його границя також дорівнює нулю. Отже, за властивістю 1( задана послідовність є нескінченно малою.

б) У даному випадку чисельник і знаменник мають нескінченні границі, тому користуватись теоремою про границю частки не можна. Перетворимо дріб, поділивши чисельник і знаменник на (найвищий степінь n). Дістанемо

Оскільки маємо , , , , то, застосувавши теорему про границю суми і добутку, помічаємо, що границя чисельника дорівнює 1, а знаменника 3. за теоремою про границю частки маємо


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат