Диференціальне числення. Функції. Область визначення. Елементарні функції. Означення функції
ПЛАН
1.Область визначення.
2.Способи задання функції.
Рис. 1.
Зауваження 1. Теорема 3 (п.2.2) стверджує існування визначеного інтеграла від Кусково-неперервної функції, яка має скінченне число точок розриву першого роду. Обчислення інтеграла від такої функції можна провести на основі властивостей інтеграла 40 і 130 (п. 2.3).
На рис. 1 зображено графік Кусково-неперервної функції, заданої на відрізку [а;b] і
1. Знаходження загальних та середніх витрат за відомими маргінальними витратами. Якщо відома функція маргінальних витрат (нагадаємо, що маргінальні витрати MC(Q) - TC'(Q) - це витрати на виробництво додаткової одиниці продукції"), то за допомогою інтегрування можна знайти функцію загальних витрат:
Середні витрати AТС(Q) можна знайти за формулою
Приклад 1.
Функція маргінальних витрат має вигляд MC(Q) = 3Q2 - 48 Q + 202. Знайти функцію загальних витрат ТC(Q) і обчислити витрати у випадку виробництва 15 одиниць продукції, якщо витрати на виробництво 10 одиниць продукції становлять 670 грн.
Розв'язування.
Функцію витрат знаходимо інтегруванням: TC(Q) = (3Q2 - 48Q + 202) dQ = Q 3 - 24Q 2 + 202Q + С , де С - константа інтегрування, що знаходиться з умови ТС(10) = 670. Тому 670 = 103 – 24 - 102 + 202 ∙ 10 + С, звідки С = 50грн. Остаточно маємо
TC(Q) = Q3 - 24Q2 + 202Q + 50.
Стала інтегрування дорівнює сталим витратам, що відповідають обсягу виробництва Q = 0 , отже для функції загальних витрат С = ТС(0) = FC. Для Q = 15 ТС(15) = 153 – 24 • 152 + 202 ∙ 15 + 50 = 1055 (грн.).
2. Знаходження загального та середнього доходу за відомою функцією маргінального доходу. Якщо відома функція маргінально¬го доходу MR(Q) = TR'(Q) (дохід від продажу додаткової одиниці продукції чи послуги), то функцію загального доходу можна знайти за формулою
а середній дохід
Приклад 2.
Відома функція маргінального доходу MR(Q) = 250 - 0,3Q - . Знайти функціональну залежність загального доходу і середнього доходу від обсягу продукції і обчислити ці показники у випадку, коли обсяг продукції становить 20 одиниць.
Розв'язування.
Маємо:
Легко бачити, що для Q = 0 TR(0) = 0 (дохід буде нульовим, коли продукція не виробляється). Отже, загальний дохід