Зворотний зв'язок

Системи координат (декартова, полярна, циліндрична, сферична). Довжина і координати вектора. Векторний простір. Лінійна залежність і незалежність системи векторів

План

•Базис.

•Лінійна залежність і незалежність векторів.

•Декартова система координат.

•Довжина і координати вектора.

•Поділ відрізка в заданому відношенні.

•Полярна система координат.

•Циліндрична система координат.

•Сферична система координат.

•Заміна системи координат.

1. Базис

Довільна впорядкована (взята в певному порядку) трійка некомпланарних векторів називається базисом простору.

Базисом на площині називаються два неколінеарних вектори, взяті в певному порядку.

Базисом на прямій називається довільний ненульовий вектор на цій прямій.

Ніякі два вектори базису в просторі неколінеарні, оскільки в противному випадку всі три були б компланарні. Так само вектори базису на площині ненульові (якщо хоча б один із них був нульовий, то вони були б колінеарні).

Якщо деякий вектор представити як лінійну комбінацію інших векторів, то говорять, що він розкладений за цими векторами.

Означення. Якщо базис в просторі і то числа називаються координатами (компонентами) вектора в даному базисі. Аналогічно визначаються координати вектора в базисі на площині (двома числами) і на прямій (одним числом). Координати вектора будемо позначати так:

Із шкільного курсу математики відомі такі твердження:

Кожний вектор, що паралельний деякій прямій, може бути розкладений за базисом на цій прямій.

Кожний вектор, що паралельний деякій площині, може бути розкладений за базисом на цій площині.

Кожний вектор може бути розкладений за базисом в просторі.

Координати вектора в кожному випадку визначаються однозначно.

Очевидно також, що рівні вектори мають однакові координати.

При множенні вектора на число його координати множаться на це число.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат