Зворотний зв'язок

Інтегрування виразів, що містять тригонометричні функції. Приклади первісних, що не є елементарними функціями. Використання таблиць неозначених інтегралів

в) Усі інтеграли вигляду

де - раціональна функція, інтегруються в замкненому вигляді. Цей висновок випливає з п.9.4.

г) Інтеграли вигляду

( - ціле, додатне число) можна проінтегрувати відповідно за допомогою підстановок

В результаті матимемо

Аналогічно обчислюється і другий інтеграл.

д) Інтеграли вигляду де - цілі невід’ємні числа, обчислюються, використовуючи формули тригонометрії для пониження степеня:

(8.27)

Тоді

Піднісши до степеня і розкриваючи дужки, одержимо інтеграли, що містять в парних і непарних степенях. Інтеграли з непарними степенями обчислюються, як показано у випадку б). Парні показники степенів знову понижуємо за формулами (9.13). Продовжуючи так, дійдемо до інтегралів які легко обчислюються.

Якщо хоча б один з показників від’ємний, то необхідно робити підстановку (або ).

Інтеграли вигляду можна

проінтегрувати, застосовуючи формулу Муавра. Маємо:

(8.28)

Звідси

Далі обчислимо:

Аналогічно

Тепер уже інтегрування двох інтегралів здійснюється легко для будь-яких скінчених цілих .

е) Усі інтеграли вигляду

можуть бути представлені в замкненому вигляді, якщо функція є цілою раціональною функцією відносно синусів і косинусів величин, що стоять під знаком функції, а всі константи є дійсними числами.

Оскільки ціла раціональна функція будується лише на основі дій додавання, віднімання і множення ( зокрема піднесення до цілого додатного степеня ) , то кожний добуток двох множників можна подати у вигляді суми двох доданків на основі формул

(8.29)

Застосовуючи формули (8.29) послідовно до кожного члена, що є добутком кількох множників, функцію можна подати як лінійну комбінацію синусів і косинусів, аргументи яких є лінійними функціями . Кожна така лінійна комбінація інтегрується елементарно.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат