Лінійні однорідні рівняння
План
•Лінійні однорідні диференціальні рівняння другого порядку з постійними коефіцієнтами
•Характеристичне рівняння
•Загальний розв’язок лінійного однорідного диференціального рівняння з постійними коефіцієнтами
1. Лінійні диференціальні рівняння з сталими коефіцієнтами
Такі рівняння дуже часто зустрічаються в практиці й розв’язуються досить просто. Розглянемо окремі однорідні й неоднорідні рівняння, причому для простоти опинимося детально на диференціальних рівняннях другого порядку.
1.1. Лінійні однорідні рівняння другого порядку з постійними коефіцієнтами
Нехай маємо диференціальне рівняння вигляду
(12.38)
де і - сталі числа. Знайдемо два лінійно незалежних розв’язки цього рівняння . Будемо шукати розв’язок рівняння (12.38) у вигляді експоненти де - поки що невідома стала. Похідна будь-якого порядку від такої функції містить , а це дозволяє легко знайти розв’язок (12.38).
Справді, запишемо та :
Підставляючи ці похідні, а також функцію в рівняння (12.62), одержимо
Оскільки маємо
(12.39)
Рівняння (12.39) називається характеристичним відносно рівняння (12.38). Це – квадратне рівняння. Можливі такі ситуації відносно його коренів:
1) і - дійсні, причому не рівні між собою числа ;
2) і - комплексні числа ( );
3) і - дійсні рівні числа
Зупинимося детально на кожному із цих трьох випадків.
1) Корені характеристичного рівняння дійсні й різні:
Відповідні частинні розв’язки та
лінійно незалежні, бо
Загальний розв’язок рівняння (12.38) має вигляд