Прийняття управлінських рішень
Основну задачу теорії ігор можна сформулювати так: визначити, яку стратегію має застосувати розумний гравець у конфлікті з розумним противником, аби гарантувати кожному з них виграш при чому так, що відхилення будь-якого з гравців від оптимальної стратегії може тільки зменшити його виграш .
Центральне місце в теорії ігор займають парні ігри з нульовою сумою, тобто ігри, в яких:
приймають участь тільки дві сторони;
одна сторона виграє рівно стільки, скільки програє інша.
Такий рівноважний виграш, на який мають право розрахувати обидві сторони, якщо вони будуть додержуватися своїх оптимальних стратегій, називається ціною гри. Розв'язати парну гру з нульовою сумою означає знайти пару оптимальних стратегій (одну для першого гравця, а другу - для другого) і ціну гри.
Дві компанії Y і Z з метою збільшення обсягів продажу продукції розробили наступні альтернативні стратегії:
Компанія Y : - Y1 (зменшення ціни продукції);
Y2 (підвищення якості продукції);
Y3 (пропозиція вигідніших умов продажу).
Компанія Z : - Z1 (збільшення витрат на рекламу);
Z2 (відкриття нових дистриб'юторських центрів);
Z3 (збільшення кількості торгових агентів).
Вибір пари стратегій Yi i Zj визначає результат гри, який позначимо як Aij і вважатимемо його виграшем компанії Y. Тепер результати гри для кожної пари стратегій Y i Z можна записати у вигляді матриці, у якій m рядків та n стовпців. Рядки відповідають стратегіям компанії Y, а стовпці - стратегіям компанії Z:
Стратегії YСтратегії Z
Z1Z2Z3
Y1А11А12А13
Y2А21А22А23
Y3А31А32А33
Така таблиця називається платіжною матрицею гри. Якщо гра записана у такому вигляді, це означає, що вона приведена до нормальної форми.
Для розв'язання гри розрахуємо верхню і нижню ціну гри та обчислимо сідлову точку.
Нижню і верхню ціну гри знаходимо керуючись принципом обережності, згідно якого у грі потрібно поводити себе так, аби при найгірших для тебе діях противника отримати найкращий результат (вже відомий нам критерій песимізму).Нижня ціна гри (яку прийнято позначати a) розраховується шляхом визначення мінімального значення Aij по кожному рядку платіжної матриці (стратегії гравця Y) і вибору з-поміж них максимального значення, тобто: