Зворотний зв'язок

Елементи логіки

(ABCB)(BCAB) (3)

 (ABC)(ABB)(BCA)(BCB) (3)

 (AC)(BC)(AB)(BB)(BA)(CA)

(BB)(CB) (9)

 (AC)(BC)(AB)(BA)(CA)(CB)

4. Тавтології, суперечності та логічні висновки

Означення. Формула називається тотожньо істинною, або тавтологією, якщо має значення 1 при всіх можливих значеннях пропозиційних змінних.

Наприклад, AA чи (AB)(BA). Неважко також переконатися, що заміною знаків  на зв'язку  у законах (1)-(13), наведених у п.1.1, одержуються саме тавтології.Тавтології характерні тим, що коли всі входження тієї самої літери замінити на будь-яке, але одне й те саме висловлення, то нове висловлення буде істинним. Наприклад, підставимо у тавтологію ((AB)B)A замість літери A висловлення "світить сонце", а замість літери B – "світять зорі". Одержане висловлення "Якщо світить сонце або світять зорі, і не світять зорі, то світить сонце" є істинним. Підкреслимо, що сама по собі структура цього висловлення вже забезпечує його істинність.

Неважко переконатися, що якщо тавтологіями є деяка формула X і формула XY, то Y також є тавтологією.

Означення. Формула називається тотожньо хибною, або суперечністю, якщо має значення 0 при всіх можливих значеннях пропозиційних змінних.

Одним із характерних прикладів суперечності є висловлення AA. Ця суперечність використовується у доведенні тверджень вигляду AB методом "від супротивного". Припускають істинність заперечення (AB), тобто істинність AB. З істинності B виводять A, одержуючи суперечність AA. Вона свідчить про хибність AB, тобто істинність AB.

Зауважимо, що для доведення істинності AB достатньо з B вивести A, тобто довести істинність протилежного твердження BA. Адже за законом контрапозиції (11) AB  BA

Очевидно, що заперечення будь-якої тавтології є суперечністю, і навпаки. На відміну від тавтологій, підстановка висловлень у суперечності породжує хибні висловлення.

Тепер розглянемо поняття логічного висновку. У математиці, як і у звичайному житті, доводиться з'ясовувати, чи випливає деяке твердження з одного або кількох інших, тобто чи є це твердження їх логічним висновком.

Приклад. Припустимо, що купівельна спроможність грошей падає, якщо зростають податки, і що люди незадоволені, коли падає купівельна спроможність грошей. Припустимо також, що податки зростають. Звідси можна дійти висновку, що люди незадоволені.

Для цього позначимо висловлення літерами:

A – "податки зростають",

B – "купівельна спроможність грошей падає",

C – "люди незадоволені".


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат