Vom Roheisen zum Stahl
Das im Hochofenprozess entstandene Roheisen ist als Werkstoff leider kaum zu gebrauchen. Es enthält verschiedene Verunreinigungen. Diese sind die Elemente Kohlenstoff, Mangan, Silizium, Phosphor, Schwefel u.a., wobei Kohlenstoff mit 3-5% anteilsmäßig wesentlich mehr enthalten ist als die anderen unerwünschten Begleitelementen. Kohlenstoff und die anderen Verunreinigungen bewirken, dass das Roheisen spröde (brüchig) wird und sich schlecht schmieden (verformen) lässt, aber auch, dass es schneller schmilzt als reines Eisen.
Weiterverarbeitung
Das flüssige Roheisen aus dem Hochofen wird je nach der Art, in der Kohlenstoff in ihm gebunden ist, in graues und weißes Roheisen unterteilt. Graues Roheisen wird nach dem Einschmelzen von Schrotteilen in Formen gegossen und heißt dann Gusseisen. Gegenstände aus Gusseisen sind z.B. Kanaldeckel, Heizkörper, Öfen, Rohre, Motorblöcke und Maschinenteile. Gegenstände aus Gusseisen sind aber spröde und nicht sehr temperaturbeständig. Ihr Vorteil ist, dass sie kaum rosten. Weißes Roheisen hingegen wird zu Stahl weiterverarbeitet.
Stahl
Die Vorteile des Stahls liegen in seiner guten Verformbarkeit und seiner Hitzebeständigkeit. Stahl wird aus Roheisen hergestellt, in dem man den Kohlenstoffgehalt unter etwa 1,7% senkt und die anderen verunreinigenden Elemente weitgehend entfernt. Stahl wird aus diesem Grund auch "veredeltes Eisen" genannt. Dem Stahl kann man noch Elemente beimengen, so dass je nach Art und Menge der Elemente Stahllegierungen mit speziellen Eigenschaften entstehen.
Verfahren zur Stahlherstellung
Der Vorgang, bei dem der Gehalt an Kohlenstoff und anderem Elementen im Roheisen gesenkt wird, wird als Frischen bezeichnet, was nichts anderes bedeutet, als dass die unerwünschten Begleitelemente oxidiert werden. Relativ unbedeutende Frischverfahren sind das Bessemer-Verfahren und das Thomas-Verfahren, bei denen die Oxidation durch Luft vonstatten geht.
Technisch weit verbreitet ist aber das sogenannte LD-Verfahren. Seinen Namen erhielt es nach den Österreichischen Stahlwerken in Linz und Donawitz. Bei diesem Verfahren wird das flüssige Roheisen aus dem Hochofen in einen großen, schwenkbaren Behälter gefüllt. Dieser Behälter heißt Konverter und fasst ungefähr 300t flüssiges Roheisen. Zusätzlich wird noch Eisenschrott in ihn gegeben. Der Eisenschrott wird zur Kühlung des Konverters benötigt. Denn die Reaktion, die zur Umwandlung von Roheisen in Stahl führt, ist exotherm, so dass die Temperatur der Schmelze im Konverter trotz Zugabe von Metallschrott von etwa 1250°C auf etwa 1600°C ansteigt.
Am Anfang der Reaktion steht eine wassergekühlte Lanze, die in die Schmelze des Konverters gehalten wird. Durch diese Lanze wird reiner Sauerstoff mit einem Druck von etwa 10bar geblasen. Der Sauerstoff oxidiert die Begleitelemente und die entstehenden gasförmigen Oxide (die Gase Kohlenmonoxid, Kohlendioxid und Schwefeldioxid) entweichen durch die Konverteröffnung in den Abgaskamin oder lagern sich an der Oberfläche der Schmelze ab (alle festen/flüssigen Oxide), wo sie zusammen mit vorher zugegebenem Kalkstein die sogen. Schlacke bilden. Nach etwa einer halben Stunde ist der Gehalt an Fremdelementen in der Schmelze stark gesenkt. Die Schlacke und die Stahlschmelze werden getrennt voneinander abgestochen, d.h. aus dem Konverter in einen Transportkübel gegossen. Dann folgt der Prozess der Rückkopplung, bei der man noch etwas kohlenstoffhaltiges Eisen hinzu gibt, um den Kohlenstoffgehalt des Stahls zu regulieren, den dieser darf nicht zu klein werden.
Das zweite wichtige Stahlherstellungsverfahren ist das Elektrostahlverfahren. In einem Elektroofen wird das Roheisen auf Temperaturen um 3000°C gebracht. Dies erreicht man durch anlegen einer Spannung zwischen zwei Graphitelektroden, zwischen denen sich dann ein sogenannter Lichtbogen bilden. Außer dem Roheisen wird Schrott zugegeben, dessen Sauerstoffanteil die Begleitelemente oxidiert. Dann setzt man Legierungsmetalle in bestimmten Mengen direkt hinzu, so dass eine Stahllegierung entsteht. Stähle, die im Elektroofen erzeugt wurden, heißen Elektrostähle und sind besonders hochwertig.
Stahlsorten
Bei den Stahlsorten lassen sich zwei große Gruppen unterscheiden, die Kohlenstoffstähle und die Edelstähle. In beiden Fällen handelt es sich um kohlenstoffhaltiges Eisen, aber Edelstähle enthalten noch zusätzlich noch andere Metalle.Kohlenstoffstähle sind nichtlegierte Stahlsorten, die über 80% des weltweit erzeugten Stahls ausmachen. Es gibt viele Kohlenstoffstähle mit unterschiedlichem Kohlenstoffgehalt. Stähle mit einem Gehalt von weniger als 0,25% Kohlenstoff sind leicht verformbar und werden zur Herstellung von Blechen, Konservendosen, Autokarosserien, Drähten und Nägeln verwendet. Liegt der Kohlenstoffgehalt zwischen 0,25% und 0,7% wird der Stahl härter und lässt sich weniger leicht verformen. Daher wird dieser Kohlenstoffstahl für Eisenbahnschienen, im Maschinenbau, sowie im Stahlbau hauptsächlich verwendet. Die höchste Kohlenstoffkonzentration im Stahl beträgt 0,7% bis 1,5% - der Stahl ist somit sehr hart und kaum verformbar. Seine Verwendung findet Anwendung in der Chirurgie (Chirurgische Instrumente), in der Werkzeugherstellung, sowie als Rasierklingen und Stahlfedern.
Eigenschaften
Die grundlegenden mechanischen Eigenschaften aller Stähle sind die Verformbarkeit und die Zugfestigkeit. Beide Eigenschaften hängen vom Kohlenstoffgehalt des Stahles ab. Es ist aber unmöglich, beide Eigenschaften gleichzeitig in einer Stahlsorte zu optimieren.
Bei niedrigem Kohlenstoffgehalt sind die Stähle leicht verformbar und haben eine geringe Zugfestigkeit.
Bei hohem Kohlenstoffgehalt aber herrschen eine hohe Zugfestigkeit und eine schwere Verformbarkeit vor.