Розв’язання систем лінійних рівнянь методом Гауса
Розглянемо другий випадок. Нехай ступінчаста матриця S(Ā') містить r ненульових рядків і перші ненульові елементи цих рядків знаходяться в стовпцях з номерами k1 = 1, k2,k3, …,kr. З означення ступінчастої матриці випливає, що 1 = k1 < k2 < … < kr < n.
Всі рівняння системи S(Ā'), які мають вигляд 0 • x1 + 0 • x2 + ... + 0 • хn = = 0, відкинемо. Дістанемо систему S(Ā''), еквівалент¬ну системі S(Ā'). Невідомі х1, xk, xk2, ..., хkr, з яких починаються перше, друге, ..., r-те рівняння системи S(Ā''), назвемо головними, а всі інші (якщо вони є) —вільними.
Припустимо спочатку, що вільних невідомих немає. Тоді r = п, k1 = 1,
k2 = 2, k3 = 3, ..., kn = n, і система S(Ā'') має вигляд
a'11x1 + a'12x2 + … + a'1(n-1)xn-1 + a'1nxn = b'1,
a'22x2 + … + a'2(n-1)xn-1 + a'2nxn = b'2,
…………………………………………………………
a'(n-1)(n-1)xn-1 + a'(n-1)nxn = b'n-1,
a'nnx = b'n,
(a11 0, a22 0, …, ann 0).
З останнього рівняння системи (3) знаходимо ділком певне зна¬чення невідомого xп. Підставивши його в передостаннє рівняння
системи (3), знайдемо відповідно одне значення невідомого xn-1. Тоді таким же способом послідовно дістанемо єдині значення невідомих xп-2, xп-з, …, х2, x1. Добуті таким чином значення невідомих x1, x2, …, xn cтановлять, очевидно, єдиний розв'язок системи (3). Отже, в розглядуваному випадку система S(Ā''), а також і система S(Ā'), сумісні й визначені. Припустимо тепер, що вільні невідомі є. Тоді система має вигляд
a'11x1 + … + a'1k2xk2 + … + a'1krxkr + … + a'1nxn = b'1,
a'2k2xk2 + … + a'2krxkr + … + a'2nxn = b'2,
…………………………………………..……
a'rkxkr + a'(n-1)nxn = b'n-1,
a'nnx = b'n,
(a11 0, a22 0, …, ann 0).
Позначимо символом Б( суму всіх членів і'-го рівняння системи (4), що містять в}льні невідомі. Перенісши члени з вільними неві¬домими в праві частини рівнянь, дістанемо систему
а[іх^ + а^хь, + ••• +а'іі,^=Ь[—і^,
аг^іг, — • • • + аих^ = Ьі — ^2, ,е\
а-г^х^ ==Ьг— І-,г, \еквівалентну системі (4). У системі (5) коефіцієнти а\\, аг»,, азіг,, ... ...аг відмінні від нуля. Надамо вільним невідомим у системі (5) довіль¬но вибраних числових значень: дістанемо систему вигляду (3). Роз¬в'язавши її описаним вище способом, дістанемо єдині значення голов¬них невідомих Хц х^, Хі:,, ..., х^. Сукупність знайдених значень го¬ловних невідомих і вибраних нами значень Д вільних невідомих, очевидно, задовольняє кожне рівняння системи (5), тобтоє цілком визначеним розв'язком цієї системи, а отже, і еквівалентної їй систе¬ми 5 (Л'), що відповідає вибраним значенням вільних невідомих. ^Оскільки значення вільних невідомих можна вибирати довільно, то множина різних наборів цих значень нескінченна. Тому множина розв'язків системи (5) і еквівалентної їй системи 5 (А') нескінченна. Таким чином, система 5 (Л') сумісна, але невизначена.