ПОШУК, СОРТУВАННЯ ТА ПОНЯТТЯ СКЛАДНОСТІ У ПРОГРАМУВАННІ
Як бачимо, кожне зростання n у 10 разів веде до зростання n(n-1)/2 та n(1+ log2n ) приблизно в 100 й 14 разів відповідно, і за n=10000 сортування злиттям виконується в сотні разів скоріше, ніж бульбашкове!
Зауважимо, що в наведеному алгоритмі сортування злиттям копіювання масиву в допоміжний указано лише для того, щоб ідею алгоритму було простіше сприйняти. Цей алгоритм нескладно переробити так, щоб замість копіювання в додатковий масив відбувалося злиття в нього упорядкованих ділянок. Отже, на кроках з номерами 1, 3, 5, … має відбуватися злиття в допоміжний масив, а на кроках 2, 4, 6, … – злиття в протилежному напрямку. Переробка алгоритму залишається вправою.
Сортування злиттям можна задати рекурсивно: масив поділяється на дві приблизно рівні частини, які після сортування (тим самим способом – ось рекурсія!) зливаються. Коли ж довжина частини масиву зменшується до 1, відбувається просто повернення з рекурсії. Цей алгоритм уточнюється наступною процедурою Mrgrec. На відміну від процедури Merges, вона має два параметри-масиви (той, що сортується, та допоміжний), а також два числові параметри (початок і кінець частини масиву, яка сортується). Крім того, спочатку відбувається злиття ділянок основного масиву в допоміжний, а потім копіювання в основний:
procedure Mrgrec(var A, B : ArT; l, r : integer);var m, k : integer;
begin
if l>=r then exit;
m:=(l+r) div 2;
Mrgrec(A, B, l, m); Mrgrec(A, B, m+1,r);
mrg(A, l, m-l+1, r-m, B);
for k:=l to r do A[k]:=B[k];
end;
Ця процедура набагато коротше нерекурсивної процедури Merges, але виконання її довше. Власне сортування починається лише після повернення з викликів, у яких l=r, а це практично "середина дистанції".
Завершуючи описання сортування злиттям, скажемо, що цей алгоритм є першим із ефективних алгоритмів сортування. У 1945 році його винайшов Джон фон Нейман, один із піонерів програмування.
Серйозним недоліком цього алгоритму є необхідність додаткового масиву такої ж довжини, як і в основного. За великих довжин можлива ситуація, коли на один масив пам'яті вистачає, а на два – ні. Розглянемо два алгоритми, позбавлені цього недоліку.
4.2. Піраміда, вона ж дерево
Уявіть собі, що ми розташували елементи масиву рядками, щоразу подвоюючи їх кількість: у першому рядку – перший елемент, у другому – елементи з індексами 2, 3, у наступному – 4, 5, 6, 7, далі 8, 9, 10, 11, 12, 13, 14, 15 тощо. Останній рядок може виявитися неповним. Наприклад, за кількості елементів n=12 маємо таку піраміду індексів:
1
2 3
4 5 6 7