Зворотний зв'язок

ПОШУК, СОРТУВАННЯ ТА ПОНЯТТЯ СКЛАДНОСТІ У ПРОГРАМУВАННІ

Аналітичне задання функції F(A, n) для реальних алгоритмів, як правило, неможливе й не потрібне. Велике практичне значення має так званий порядок зростання F(A,n) за n. Він задається за допомогою іншої функції з простим аналітичним виразом, яка є оцінкою для F(A, n).

Функція G(n) є оцінкою для функції F(n), або F(n) є функцією порядку G(n), коли існують такі додатні скінченні числа C1 і C2, що за деякого m при всіх n > m

C1 G(n)  F(n)  C2 G(n).

Така залежність між функціями позначається за допомогою знака "О":

F(n) = O(G(n)).

Для задання порядку зростання інколи користуються іншим означенням: функція F(n) називається функцією порядку G(n) за великих n, якщо , де C>0, C< .

Функція F(n) називається функцією порядку, меншого від G(n) за великих n, і це позначається F(n)=o(G(n)), якщо .

Для оцінки складності переважної більшості реальних алгоритмів достатньо логарифмічної, степеневої та показникової функцій, а також їх сум, добутків та підстановок. Усі вони монотонно зростають і задаються простими аналітичними виразами.

Приклад 1. n (n-1) = O(n2), оскільки за n > 2 маємо

0.5 n2 < n*(n-1) < n2.

Аналогічно неважко довести, що n3 + 100 n2 = O(n3) = o(n3.1) = o(2n), 100 logn + 10000 = O(logn) = O(lgn) = o(n).

Приклад 2. Складність алгоритму бульбашкового сортування tb(n)=O(n2), алгоритму лінійного пошуку – t1(n)=O(n), бінарного пошуку – t2(n)=O(logn)=o(n).

Тепер означимо поняття складності задачі. Алгоритми пошуку в упорядкованому масиві свідчать, що одна й та сама задача може мати алгоритми розв'язання з різною складністю. Неформально, під складністю задачі розуміють найменшу зі складностей алгоритмів її розв'язання. Іншими словами, задача має складність порядку G(n), якщо існує алгоритм її розв'язання зі складністю O(G(n)) і не існує алгоритмів зі складністю o(G(n)).

Наприклад, складність задачі пошуку в упорядкованому масиві визначається складністю алгоритму двійкового пошуку, тому й оцінюється функцією logn. Задача сортування масиву має складність порядку n logn. Доводити ці факти ми не будемо – можна подивитися, наприклад, у книгу [АХУ]. Але в наступному параграфі ми наведемо алгоритми сортування з цією оцінкою складності.

Задачі

5. Оцінити складність задачі

а) * про Ханойські вежі (підр.9.3); б) пошуку підмножини (підр.9.2).

6.* Оцінити складність алгоритмів сортування вибором та простими вставками (задачі 17.3, 17.4).

7.* Задача про неспадну підпослідовність. Задано n-елементний масив цілих, n<10000. Знайти:

а) максимальну довжину неспадних підпослідовностей значень масиву;

б) неспадну підпослідовність значень масиву максимальної довжини. Якщо таких кілька, то з них вибиpається та, що має найменшу суму елементів. Напpиклад, за масиву зі значеннями <2, 1, 5, 3> це буде <1, 3>.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат