Загальні положення теорії ймовірностей та математичної статистики
х123456
Р1/61/61/61/61/61/6
F(x) = P (x
Із аксіоми ймовірностей випливають такі властивості F(x):
0 < F(x) < 1 для всіх х
F (-) = 0
F (+) = 1
Функція розподілу зв’язана з функцією ймовірності наступним чином:
1) F(x) = P(xi)xi
Якщо випадкова величина є дискретною, то її функція розподілу буде мати східчасту форму. Наприклад функція розподілу для гральної кості (рис.1).
А функція розподілу випадкової величини, яка описує кут положення годинникової стрілки на циферблаті у випадкові моменти часу зображено на рис.2.
Перша похідна функції розподілу називають щільністю ймовірності випадкової величини або диференціальною функцією.
Ймовірність попадання випадкової величини в інтервал визначається так:
2) P(x
3) P(a
де f(x) – щільність ймовірності.
1.3. Часто необхідно охарактеризувати випадкову величину одним чи кількома значеннями, які інтегрують інформацію, що міститься в функції розподілу ймовірності. Такими величинами є мода, математичне сподівання, дисперсія, середньоквадратичне відхилення в величині.
Мода – це найбільш ймовірне значення випадкової величини.
Математичне сподівання випадкової величини х, яке позначається М[x], є значення: М[x]= xip(xi), якщо величина х дискретна. М[x]= xf(x)dx, якщо х неперервна.
Особливе значення в теорії ймовірностей має дисперсія випадкової величини х.
Дисперсія величини змінної є мірою розсіювання щільності ймовірного розподілу довкола його математичного сподівання. Якщо дисперсія випадкової величини мала, то це означає, що вся вибірна згрупована поблизу математичного сподівання.
Додатне значення квадратного кореня із дисперсії наз. середньо¬квадратичним відхиленням в/в і позн. [х].
Як і дисперсія, середньоквадратичне відхилення в/в є мірою її відхилення від середнього значення, але оскільки середньоквадратичне відхилення має нерозмірність що й сама в/в, то його вважають похибкою вимірювання.