Другий закон термодинаміки та його значення
Припустимо тепер, що формулювання Кельвіна-Планка – помилкове, і формулювання Клаузиуса також. Нехай ідеальний двигун відбирає кількість теплоти | Q' | від тіла з високою температурою і потім цілком перетворить її в корисну роботу W, так що W= |Q| . Потім звичайний холодильник використовує цю роботу для добору кількості теплоти |Q'| від тіла з низькою температурою і передачі кількості теплоти |Q"| тілу з високою температурою. Отже, цей пристрій відбирає від тіла з високою температурою кількість теплоти | Q | і передає йому кількість теплоти | Q" |; результуючий приплив теплоти до тіла з високою температурою при цьому дорівнює | Q" |-| Q |=(| Q' | + | Q |)-| Q |=| Q' |. Таким чином, результуюча дія цього пристрою складається у відборі кількості теплоти | Q' | від тіла з низькою температурою передачі такої ж кількості теплоти | Q' | тілу з високою температурою, що суперечить другому початку термодинаміки у формулюванні Клаузіуса.
Ми переконалися в тім, що якщо одне з формулювань другого початку термодинаміки, а саме Клаузіуса і Кельвіна - Планка, невірне, то невірне й інше. Отже, якщо вірне одне з них, то повинно бути вірне й інше, так що обидва формулювання еквівалентні.
Розділ 4
Двигун Карно
Процес перетворення теплоти в механічну енергію розширеноно вивчав на самому початку дев'ятнадцятого століття французький учений Н. Л. Саді Карно (1796-1832). Він мав намір визначити способи підвищення ККД теплових двигунів, однак дослідження незабаром привели його до вивчення основ самої термодинаміки.Як допоміжний засіб для своїх досліджень Карно в 1824 р. винайшов (на папері) ідеалізований тип двигуна, що ми називаємо тепер двигуном Карно. Важливе значення двигуна Карно полягає не тільки в його можливому практичному застосуванні, але й у тім, що він дозволяє пояснити принципи дії теплових двигунів взагалі; не менш важливо і те, що Карно за допомогою свого двигуна вдалося внести вагомий вклад в обґрунтування і осмислення другого початку термодинаміки.
В двигуні Карно відбуваються оборотні процеси; тому насамперед необхідно з'ясувати, що ми маємо на увазі під оборотними і необоротними процесами. Оборотний процес - це такий процес, що протікає надзвичайно повільно, так що його можна розглядати як послідовний перехід від одного зрівноважного стану до іншого і т.д., причому весь цей процес можна провести в зворотному напрямку без зміни виконаної роботи і переданої кількості теплоти. Наприклад, газ, що знаходиться в циліндрі з щільно притиснутим до його стінок рухливим поршнем, (тертя зі стінками відсутнє), можна зтиснути ізотермічно зворотним шляхом, якщо проводити стиснення дуже і дуже повільно. Однак не всі навіть дуже повільні процеси є оборотними. Наприклад, якщо в процесі бере участь тертя (в описаному вище прикладі це може бути тертя між поршнем і стінками циліндра), то робота, зроблена під час руху в одному напрямку (наприклад, від стану А до стану В), не буде дорівнювати(із протилежним знаком) роботі, виконаної під час руху в зворотному напрямку (від стану В до стану А). Такий процес не можна було б розглядати як оборотний. Зрозуміло,що ідеальний оборотний процес у дійсності неможливий, оскільки для нього потрібно нескінченно великий час; однак оборотні процеси можна моделювати з високою точністю, і ці процеси мають дуже важливе значення для теорії. Усі реальні процеси є необоротними і відбуваються з кінцевою швидкістю. У газі можуть виникати збурення (аж до турбулентності), може бути присутнім тертя, можуть бути й інші причини необоротності. При таких умовах жоден процес не може бути чітко оборотним, оскільки втрати теплоти на тертя вже самі по собі є необоротними, турбулентність стане іншою і т.д. Для будь-якого виділеного об’єму не буде існувати одного добре визначеного значення тиску Р і температури Т, оскільки система не завжди буде знаходитися в стані рівноваги. Таким чином, реальний необоротний процес не може бути зображений на PV-діаграмі (за винятком випадків, коли такий процес у деякому наближенні можна розглядати як ідеальний оборотний процес). Оборотний процес завжди можна зобразити на РV-діаграмі, причому , коли він протікає в зворотньому напрямку по тому ж шляху. Незважаючи на те що всі реальні процеси необоротні, поняття оборотного процесу відіграє важливе пізнавальне значення так само, як і поняття ідеального газу.
Повернемося тепер до розгляду ідеального двигуна Карно. Він заснований на представленні оборотного циклу. Оборотний цикл-це послідовність оборотних процесів, за допомогою яких дана речовина (робоче тіло) переводиться з початкового зрівноваженого стану через багато інших зрівноважених станів і повертається знову в той же початковий стан. Зокрема, у двигуні Карно використовується цикл Карно, причому як робоче тіло розглядається ідеальний газ. (Для реального газу PV-діаграма циклу трохи зміниться.) Виберемо крапку а як початковий стан.
PV- діаграма
Газ спочатку розширюється ізотермічно й оборотно по шляху аb при температурі Тн; для цього можна уявити собі, що газ приводиться в контакт із гарячим термостатом при температурі Tн, що повідомляє кількість теплоти | QH | робочому тілу. Потім газ розширюється адіабатично й оборотно по шляху bс; на цій ділянці передача теплоти (теплообміну) взагалі не відбувається і температура газу знижується до значення TL. На третій стадії циклу відбувається ізотермічний оборотний стиск газу по шляху cd тут необхідний контакт із холодним термостатом при температурі TL, якому робоче тіло передає кількість теплоти | QL |. Нарешті, газ адіабатично стискається по шляху da, повертаючи знову у вихідний стан. Таким чином, цикл Карно складається з двох ізотермічних і двох адіабатичних оборотних процесів.