Зворотний зв'язок

Деякі перспективи реалізації модельних експериментів на комп’ютері та створення віртуальних лабораторних практикумів із фізики

Основна приваблива риса цього практикуму в тому, що він дозволяє за лічені хвилини провести широке коло віртуальних фізичних експериментів.

Проте, донедавна дуже багато часу витра-чалося на проектування інтерфейсу програми, на створення самих компонентів моделі, на реаліза-цію динаміки руху при візуалізації проектованого процесу.

За цими другорядними деталями інколи втрачається суть моделювання.

Використання програмних продуктів, предс-тавленого вище типу, дозволить зменшити до мінімуму роботи, не пов’язані безпосередньо з моделлю, і збільшити час, відведений на формування самого механізму роботи моделі. Така програма дозволить подивитися на фізичний процес “зсередини” і тому глибше його зрозуміти.

У розглянутому вище практикумі з геометричної оптики не було необхідності у віртуальних вимірювальних пристроях. Тому огляд можливості їх створення розглянутий окремо.

Розробка віртуальних вимірювальних пристроїв для кожного розділу фізики має свою специфіку.

Для апробації вимірів у межах модельного експерименту була створена модельна програма, що імітує рух молекул в ідеальному газі. У прямокутнику, що зображає герметично закриту посудину, рухаються кружечки, що вказують на місця розташування молекул. Молекули рухаються хаотично, пружно відбиваються від стінок. Вважається, що вони настільки малі, що вірогідність їх стикання безкінечно мала, тому вони не стикаються, а пролітають одна повз одну. Врахований розподіл молекул за швидкостями.

Підрахунок кількості зіткнень кульок (молекул) зі стінками за рівні проміжки часу (вимір тиску), можливість зміни швидкості руху кульок (зміна температури) та величини досліджуваного об’єму (рух стінок посудини), при збереженні кількості молекул всередині посудини, дозволяє побудувати графіки ізотермічного, ізобарного, ізохорного процесу в ідеальному газі.

При побудові ізотерми через рівні проміжки часу змінювали розмір посудини, підраховували кількість зіткнень із стінкою. Все це відбувалося без зміни температури (швидкості молекул). Будували залежність кількості зіткнень від об’єму.

При побудові ізохори через рівні проміжки часу змінювали швидкість молекул і підраховували кількість зіткнень із стінкою. Усе це відбувалося без зміни розміру посудини (об’єму). Будували залежність кількості зіткнень від швидкості молекул.

При побудові ізобари через рівні проміжки часу змінювали швидкість молекул і підбирали об’єм посудини таким чином, щоб кількість зіткнень із стінкою була постійною (тиск постійний). Будували залежність об’єму від середньої швидкості молекул.

Порівняння графіків, побудованих за результатами модельного експерименту, якісно співпали з графіками, побудованими за відомими емпіричними співвідношеннями (рис. 3).

На рис. 3 зліва від графіка розташований прямокутник, який візуалізує в реальному часі кількість ударів кульок об стінки. Координата кожної точки по осі ординат визначається положенням верхньої границі прямокутника на момент зупинки накопичення. Друга координата, по осі абсцис, визначається об’ємом посудини, яка знаходиться під графіком функції.

Важливим моментом є те, що в цій реалізації моделі існують кількісні виміри в реальному часі. У більшості випадків модельні навчаючі програми дають можливість тільки якісного спостереження.

Врахування взаємодії молекул, а також зменшення їх кількості в газі (при конденсації) дозволить моделювати процеси в реальних газах. Такі моделі були реалізовані.Перспективи розвитку. Цілком зрозуміло, що якісна модель складного фізичного процесу не може бути побудована тільки на основі взаємодії віртуальних фізичних об’єктів. Без програмного опису взаємодії окремих компонентів моделі можна обійтися тільки у найпростіших випадках. Однак створення транслятора мови програмування саме по собі досить складне завдання. Тому пропонується створювати лабораторні практикуми як додаток (application) до розвинутої мови програмування, наприклад, Delphi. Такий підхід дозволить накопичувати віртуальні фізичні об’єкти і створити бібліотеку алгоритмів взаємодій цих об’єктів. Передбачається, що великого спрощення роботи при створенні нових компонентів, необхідних для формування моделей, можна буде досягти завдяки наслідуванню властивостей об’єктів, їх інкапсуляції і поліморфізму. Усе вище сказане дозволить значно скоротити час на постановку та проведення нових модельних експериментів у межах лабораторних практикумів з фізики.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат