Деформація поперечного згину
Згином називається деформація бруса (балки), що виникає внаслідок дії навантажень перпендикулярних до його осі і знаходиться в одній площині.
Розглядається два види згину: плоский і косий. У випадку згину, коли силова площина проходить через вісь стержня і співпадає з однією із основних осей інерції, називається плоским поперечним згином. Згин бруса (балки) зовнішніми силами, які не співпадають із жодною з головних площин, називається косим згином.
Згин бруса (балки) двома однаковими за величиною і протилежно направленими моментами, називається чистим згином.
Рис. 1. Правило знаків при поперечному згині
При плоскому згині балки в поперечному згині виникають два внутрішніх силових фактори — поперечна сила Q і згинаючий момент М. Для їх визначення використовують метод січень. Поперечна сила в конкретному січенні чисельно дорівнює алгебраїчній сумі проекцій всіх зовнішніх сил на вісь балки з однієї сторони від січення. Поперечна сила вважається додатною, якщо зовнішня сила намагається повернути залишену частину балки за напрямком годинникової стрілки. В протилежному випадку поперечна сила — від’ємна (рис.1, а).
Згинаючий момент в січенні чисельно дорівнює алгебраїчній сумі моментів створених зовнішніми силами з однієї сторони від січення балки. Згинаючий момент вважається додатнім, якщо сила намагається вигнути балку відносно січення випуклістю вниз і від’ємним — випуклістю вверх (рис.1, б).
В поперечному січенні балки під дією зовнішніх сил або сконцентрованих моментів виникають нормальні і дотичні напруження. При цьому , а Q).
В загальному випадку згину можна вважати, що поперечне січення залишається плоским і величину нормальних напружень визначають за формулою:
, (1)
де — момент інерції січення балки відносно нейтральної лінії;
Y — віддаль від нейтральної лінії до точки січення, в якій визначається напруження;
М — згинаючий момент.
Максимальне нормальне напруження відповідає січенням найбільш віддалених від нейтральної лінії
, (2)
де — момент опору в січенні.
Крива лінія прогину осі балки під навантаженням, називається пружною лінією балки. Рівняння пружної балки і відповідно максимальна величина прогину залежать від величини зовнішньої сили та характеру її прикладання. Для двохопорної балки з навантаженням на середині довжини, величина прогину визначається за формулою:
, (3)
де f — величина прогину;
l — довжина балки;