Зворотний зв'язок

Термоядерна енергія

SiC1.313000

F-82H8600

Вартість електроенергії в порівнянні з традиційними джерелами

Критики вказують, що питання економічної доцільності використання ядерного синтезу для виробництва електроенергії залишається відкритим. В тому ж дослідженні на замовлення Офісу в Справах Науки і Техніки Британського Парламенту вказується, що собівартість виробництва електроенергії із використанням термоядерного реактору буде, імовірно, у верхній частині спектру вартості традиційних джерел енергії. Багато залежатиме від майбутньої технології, структури та регулювання ринку. Пряма вартість електроенергії дуже залежатиме від ефективності використання, часу на обслуговування та вартості декомісування реактору. Пропоненти комерційного використання енергії ядерного синтезу заперечують, що викопне пальне значною мірою субсидується урядом, як прямо так і непрямо, наприклад використанням збройних сил для забезпечення їх безперебійного постачання, війна в Іраку часто наводиться як контроверсійний приклад такого субсидування. Врахування таких непрямих субсидій є дуже складним, та робить точне порівняння собівартості практично неможливим.

Окремо стоїть питання вартості досліджень. Країни Європейської Спільноти витрачають близько 200 млн.? щороку на дослідження, та прогнозується, що потрібно ще кілька десятиріч поки промислове використання ядерного синтезу стане можливим. Прихильники альтернативних джерел електроенергії вважають, що було б доцільніше спрямувати ці кошти на впровадження відновлювальних джерел електроенергії.

Доступність комерційної енергії ядерного синтезуНа жаль, незважаючи на поширений оптимізм (поширений починаючи з 1950-х років, коли перші дослідження розпочались), суттєві перешкоди між сьогоднішнім розумінням процесів ядерного синтезу, технологічними можливостями та практичним використанням ядерного синтезу досі не подолані, неясним є навіть чи економічно вигідне виробництво електроенергії із використанням ядерного синтезу є можливим в принципі. Хоча прогрес в дослідженнях є постійним, дослідники постійно стикаються із новими проблемами. Наприклад, проблемою є розробка матеріалу що здатен витримати нейтронне бомбардування, що, як оцінюється, повинно бути в 100 разів інтенсивніше ніж у традиційних ядерних реакторах.

Розрізняють наступні етапи в дослідженнях:

•Рівновага (Break-even): коли загальна енергія що виділяється в процесі синтезу дорівнює загальній енергії затраченій на запуск та підтримку реакції. Це співвідношення позначають символом Q. Рівновага реакції було продемонстровано на JET (Joint European Torus) в Великобританії в 1997 році.

•Палаюча плазма (Burning Plasma): проміжний етап, на котрому реакція підтримуватиметься головним чином альфа-частинками що продукуються в процесі реакції, а не зовнішнім підігрівом. Q ~= 5. Досі не досягнутий.

•Запалення (Ignition): стабільна реакція що підтримує саму себе. Повинна досягатись при великих значеннях Q. Досі не досягнуто.

Наступним кроком в дослідженнях повинен стати ITER (International Thermonuclear Experimental Reactor), Міжнародний Термоядерний Експериментальний Реактор. На цьому реакторі планується провести дослідження поведінки високотемпературної плазми (палаюча плазма із Q ~ 30) та конструктивних матеріалів для промислового реактору. Остаточною фазою досліджень стане DEMO: прототип промислового реактору, на котрому буде досягнуто запалення, та продемонстровано практичну придатність нових матеріалів. Найоптимістичніші прогнози завершення фази DEMO: 30 років. Враховуючи орієнтовний час на побудову та введення в експлуатацію промислового реактору, нас відділяє ~40 років від промислового використання термоядерної енергії.

Конструкція електростанції

Термоядерні реактори переважно класифікуються відповідно до типу «утримування» (confinement) гарячої плазми. Більшість досліджень стосуються магнітного утримування плазми, в такій конструкції потужні магніти утримують гарячу плазму в центрі камери, не даючи тій руйнувати камеру (температура плазми ~ 100'000'000 K). Серед різноманітних типів реакторів із магнітним утриманням, Токамак продемонстрував найкращі результати із часу своєї появи. Інший популярний тип утримання це інерційний реактор, найбільш інтенсивні дослідження по якому ведуть американські науковці. В ньому крихітні кульки пального («пелети») вистрілюються в центр камери, та «обстрілюються» потужним лазером. Оскільки камера є порівняно великою, щільність енергії що нагріває стінки камери є недостатньою для їх руйнування. Існує також ряд менш поширених методів утримання плазми, наприклад самостягуючийся розряд, де струм що проходить через плазму генерує власне магнітне поле, або електростатичне утримання, де іонізована плазма утримується силою електростатичного відштовхування, як у реакторі Фарнсворта-Хірша.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат