Зворотний зв'язок

Радіоактивність і аналіз речовин

Звичайно при опроміненні зразка виникає суміш радіоактивних ізотопів різних інших елементів, крім визначуваного. їх потрібно розділити таким чином, щоб радіоізотоп досліджуваної речовини не мав домішок. Для радіохімічного поділу компонентів опромінений зразок переводять у розчин.

Крім кількісного аналізу зразка, активаційний аналіз дозволяє проводити й якісні дослідження, тобто ідентифікувати радіонукліди, що утворилися. Це можна зробити, спираючись на три ядерно-фізичні характеристики: тип випромінювання, період піврозпаду й енергію випромінювання. Деякі труднощі виникають, коли потрібно провести розпізнавання складу складних сумішей. У цьому випадку суміш спочатку поділяють на компоненти, а потім ідентифікують кожен із них окремо.

Методи аналізу, що ґрунтуються на взаємодії випромінювання з речовинами

Провести аналіз нерадіоактивної речовини можна без її активації. Часто використовуються реакції взаємодії ядерного і рентгенівського випромінювань із речовиною, що їх поглинає або розсіює, але активація досліджуваної речовини не відбувається. В основі методів, що базуються на цьому явищі, лежать такі принципи:

— пружне розсіювання а-частинок;

— поглинання й розсіювання β-частинок і γ-квантів;

— виникнення рентгенівського характеристичного випромінювання;

— поглинання й уповільнення нейтронів та ін.

Метод аналізу, що ґрунтується на пружному розсіюванні заряджених частинок

Важкі заряджені частинки (γ-частинки) проходять крізь аналізоване середовище, взаємодіючи з атомами речовини. При цьому найбільш важливими видами взаємодії є пружне розсіювання на ядрах визначуваного елемента, іонізація (обрив електрона) і збудження атомів визначуваного елемента, а також гальмування заряджених частинок. Однак пружне розсіювання відбувається найчастіше Треба сказати, що виникає воно в результаті кулонівської взаємодії ядра і зарядженої частинки.

Розглянутий метод аналізу ґрунтується на тому, що кінетична енергія падаючої частинки не дорівнює кінетичній енергії розсіяної частинки Для ідентифікації речовини використовують відношення кінетичної енергії частинки Е після пружного зіткнення до її вихідної енергії Ео У результаті одержують спектр, розташування піків на якому є індивідуальною характеристикою речовини За величиною піків судять про кількість досліджуваної речовини (чим пік виший, тим більшою є концентрація). Отримані піки порівнюють зі стандартними піками відомих речовин.

Після ідентифікації речовини встановлюють її концентрацію, порівнюючи висоту експериментального піка з піком тієї ж речовини відомої концентрації

Метод аналізу, що ґрунтується на поглинанні й розсіюванні β-частинок

Проходячи крізь аналізовану речовину, β-частинки вступають у реакції взаємодії як на атомних ядрах, так і в електронних оболонках атомів. При цьому енергія β-частинок зменшується, а напрямок їхнього руху змінюється, тобто відбувається розсіювання.

Втрата енергії β-частинок відбувається внаслідок не пружних зіткнень із ядрами атомів і електронами. При цьому β-частинка завжди відхилятиметься від вихідного напрямку руху на кут, що залежить від вихідної енергії частинки, і від енергії, загубленої нею при взаємодії.При пружному розсіюванні β-частинка змінює напрямок руху, але повна енергія системи не змінюється. Кут, на який відхиляється частинка, залежить від її швидкості й від масового числа елемента. Маса β-частинки й атомного ядра дуже розрізняються, тому частинка відхиляється сильно, особливо якщо β-випромінювання має низьку енергію. Крім того, відхилення на великий кут виникає і тоді, коли β-частинка пролітає поблизу ядра. Але найчастіше β-частинки рухаються на великій відстані від ядра і відхиляються на менші кути.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат