Елементарні частинки
Частинка та античастинка мають однакову масу і рівну тривалість життя у вакуумі. їхній заряд однаковий за величиною і протилежний за знаком. Спін частинки та античастинки однаковий.
Довгий час вважалося, що, завдяки подібності характеристик, частинки та античастинки повинні брати участь в аналогічних процесах (повна симетрія). Пізніше було доведено, що подібна симетрія характерна тільки для сильної й електромагнітної взаємодій, а для слабкої порушується.
Процес зіткнення частинки з античастинкою, у результаті чого виникають інші елементарні частинки або фотони, одержав назву анігіїяція. Першим прикладом анігіляції у фізиці стала взаємодія електрона й позитрона з утворенням двох у-квантів:
Для створення пари «частинка-античастинка» потрібна енергія, яка дорівнює або перевищує подвоєну енергію спокою пари. Це відбувається тому, що частинкам необхідно надати значної кінетичної енергії. Наприклад, для створення пари «протон-антипротон» (р-р) потрібно витратити 4,4 ГеВ.
Античастинки можуть анігілювати не тільки з відповідними до них частинками, але і з іншими частинками також. Наприклад, антипротон анігілює і з протоном, і з нейтроном відповідно до наступних схем:
Відмінність частинки та античастинки полягає не тільки в різнойменності їхніх зарядів. Крім цього, розрізняються їхні магнітні моменти. Так, нейтрон (π) і антинейтрон (π) відрізняються знаком власних магнітних моментів.Існує група елементарних частинок, для яких немає античастинок. Це так звані істинно нейтральні частинки. До них належать фотон, π°-мезон і π-мезон (тη = 1074mt, час життя 7 10 19,с, при розпаді утворюються π-мезони і γ-кванти). Вважають, що істинно нейтральна частинка тотожна зі своєю античастинкою. У силу цього істинно нейтральні частинки не здатні анігілювати, зате вони зазнають взаємних перетворень.
Перетворення елементарних частинок
Розглянемо схему розпаду мюона:
На підставі цієї схеми можна зробити висновок, що мюон складається з трьох елементарних частинок, але це твердження не буде правильним. Досить узяти до уваги той факт, що для деяких частинок існує кілька схем розпаду.
Розпад частинки — перетворення її на деяку сукупність нових частинок, породжених у результаті її знищення.
При зіткненнях частинок картина взаємних перетворень не менш багата, ніж при їхньому розпаді. Наприклад, при зіткненні фотона з нейтроном мають місце такі перетворення:
З наведених схем видно, що сума мас спокою кінцевих частинок більша, ніж вихідних. Таким чином, енергія частинок, що зіштовхуються, перетворюється на масу, що не суперечить формулі Ейнштейна:
ΔЕ = Δтс2.
Також зі схем випливає, що неможливо розщепити елементарні частинки ! (зокрема нейтрони), бомбардуючи їх іншими частинками (у цьому випадку фотонами): насправді ж відбувається не розщеплення обстрілюваних частинок, а народження нових, причому значною мірою це відбувається за рахунок енергії частинок, що зіштовхуються.
Взаємні перетворення елементарних частинок мають свої закономірності, що перегукуються із законами класичної фізики. Так, дуже важливим є той факт, що для елементарних частинок також можуть бути застосовані закони збереження їхніх фундаментальних характеристик. Наприклад, для елементарних частинок виконується закон збереження електричного заряду: при будь-якому взаємному перетворенні частинок алгебраїчні суми електричних зарядів вихідних і кінцевих частинок рівні. Це дозволяє відразу виключити з аналізу ті схеми, де ця умова не виконується.