Зворотний зв'язок

Вектори на площині і в просторі. Дії з векторами

Вектори на площині і в просторі. Дії з векторами

Мета. Узагальнення знань студентів про вектори на площині; формування поняття вектора в просторі.

1. Вектори. Основні поняття і означення.

2. Дії над векторами.

1. Вектор - це напрямлений відрізок або вектор - це паралельний перенос.

Вектори позначають:

Або за початком і кінцем

Якщо початок і кінець співпадають, вектор називають нульовим або О Два вектори називають рівними, якщо їх довжини рівні, а напрями співпадають

Вектори, які лежать на паралельних прямих, називають колінеарними.

(а якщо ця умова не виконується, то не колінеарними)

Вектори, які лежать в одній площині, називають компланарними (а якщо

ця умова не виконується, не компланарними).

- не компланарні

- компланарні

2. Додавання векторів Правило трикутника

Правило паралелограма

Сумою двох не колінеарних векторів, що виходять з однієї точки, є діагональ паралелограма, побудованого на цих векторах, яка виходить з цієї ж точки.

Правило паралелепіпеда

Сумою трьох не колінеарних векторів, що виходять з однієї точки, є діагональ паралелепіпеда, побудованого на цих векторах, яка виходить з цієї ж точки.

Властивості додавання

1) - комутативність

2) - асоціативність

3)

4) якщо , то і називається протилежним


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат