Гіпербола
4 крок. Зв'яжемо алгебраїчним вираженням координати поточної точки М(x;y) з даними по визначенню гіперболи. Позначимо відстань (фокусна відстань) через 2с. По визначенню гіперболи різниця відстаней від точки М до фокусів є величина постійна незалежно від того, де на гіперболі знаходиться точка М. Позначимо цю відстань через 2а:
Розпишемо відстань по формулі (1). Для цього ми повинні знати координати фокусів (координати точки М - (х;у)). Т.к. відстань те фокуси мають координати Тоді по формулі (1) маємо:
Підставивши ці вираження в рівність (17), одержимо:
.
Цим рівнянням зв'язані координати поточної точки М(х;у) з даними задачі. Отже, воно є рівнянням гіперболи.
5 крок. Спростимо отримане вираження, двічі звівши його в квадрат і позначивши через
(11)
Через громіздкість викладень приводити їхній не будемо. Одержимо:
Ми одержали канонічне рівняння гіперболи. Для неї як і для еліпса існує поняття ексцентриситету, що позначається буквою (епсилон) і характеризує ступінь сплющеності гіперболи. Ексцентриситет обчислюється по формулі:
Побудова гіперболи.
Будуємо прямокутну систему координат. На осі ОХ від початку координат відкладаємо вліво і вправо відрізки а (довільної довжини). А на осі OY - відрізки b. Через точки на осях проводимо прямі, рівнобіжні осям координат. Одержали прямокутник зі сторонами 2а і 2b. Проведемо діагоналі прямокутника. Вони називаються асимптотами гіперболи. Галузі гіперболи як завгодно близько наближаються до асимптотам, але не перетинають їх. Вершини гіперболи знаходяться на відстані а від початку координат вліво і вправо.
Побудуємо галузі гіперболи. Відстань АВ = 2а - називається дійсною віссю гіперболи, CD = 2b - мнимою віссю гіперболи. З рівності (11) випливає, що , тобто з > 0 = ОК і фокуси будуть розташовуватися усередині вісей гіперболи.
2. Побудувати гіперболу і визначити її фокуси й ексцентриситет.
Рішення: Щоб побудувати гіперболу, треба знати параметри а і b, а для цього рівняння гіперболи треба привести до канонічного виду, тобто
Отже ,.
Будуємо прямокутну систему координат, на осі ОХ відкладаємо вліво і вправо від початку координат відрізки 4,2, на осі OY нагору і вниз - відрізки 2,1. Проводимо прямі, рівнобіжні осям координат, одержуємо прямокутник зі сторонами 8,4 і 4,2. Проведемо діагоналі цього прямокутника, це асимптоти гіперболи, креслимо галузі гіперболи.
Знайдемо фокуси. Координати фокусів . Для перебування зі скористаємося співвідношенням (11).
Координати фокусів :
Знайдемо ексцентриситет гіперболи:
. Ексцентриситет гіперболи завжди більше 1.