Зворотний зв'язок

Інваріантність

Нагадаємо із курсу загальної фізики, що в релятивістській ( не Ньютонівській) механіці, коли швидкістю руху тіл не можна не можна знехтувати порівняно з швидкістю світла, яка згідно ІІ постулату Ейнштейна одинакова у всіх інерціальних системах відліку, справедливі перетворення не Галілея, а Лоренцо (мал. 1.6)

(1.29) (1.30)

Ми бачимо, що при перетвореннях Лоренцо змінюються і координати і час. Причому останні характеристики невіддільні одна від одної є відносними. Але і в релятивістській механіці можна знайти такі величини, співвідношення, які є інваріантними в довільній інерціальній системі відліку.

Першим таким інваріантом є швидкість світла. Нетрудно переконатися із співвідношень (1.29), що другим важливим інваріантом є інтервал події. Його квадрат визначається як:

Отже: (1.31)

Інваріантами, як ми уже також знаємо, з курсу загальної фізики є маса спокою і енергія спокою.

Із останнього співвідношення випливає, що коли кількість руху К в одній інерціальній системі не залежить від часу то вона залишається постійною і в іншій системі відліку К', поскільки m і константи. Тобто, закон інерції справедливий в усіх інерціальних системах відліку.

Кінетична енергія системи частинок в системі xOy буде:Остання рівність показує зміну кінетичної енергії при переході від однієї інерціальної системи до іншої. Очевидно також, що якщо кінетична енергія системи в одній інерціальній системі відліку постоянна в часі, то вона буде постійною в часі і в іншій інерціальній системі відліку, якщо система частинок замкнута і між частинками діють тільки пружні сили. Таким чином, закон збереження кінетичної енергії справедливий у всіх інерціальних системах, якщо він справедливий в одній з них. При цьому слід відмітити, що кількість руху ізольованої системи частинок залишається постійною завжди і при недружніх взаємодіях, а кінетична енергія зменшується в цьому випадку на одну і ту ж саму величину в системах xOy і x'O'y'. Це зменшення - інваріант.

Між частинками системи можуть діяти сили, що залежать тільки від віддалі між ними і напрямлені по лінії що їх з'єднують. Тоді кожна конфігурація володіє певною потенціальною енергією U.

Якщо між частинками ізольованої системи відбувається така взаємодія, то закон збереження енергії (механічної) справедливий у всіх інерціальних системах.

Отже ми бачимо, що хоч самі фізичні величини можуть бути варіантними, але співвідношення в які вони входять (або між ними) в довільній інерціальній системі є однаковими (напр. або ). Тобто співвідношення є інваріантними.

Практичне заняття №1

Задача 1. Закон руху точки відносно системи відліку S має вигляд: ; ; , де , і - постійні коефіцієнти. Визначити траєкторію, лінійну і секторну швидкості а також прискорення точки відносно тієї ж системи відліку.

Розв'язок: Диференціюючи по часу задані функції , і отримаємо проекції швидкості і прискорення точки на декартові осі

; ;

; ;

Виражаючи проекції прискорення через проекції радіус-вектора, переконаємося в тому, ??????????????????????????????

; ; , тобто,


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат