Зворотний зв'язок

Поняття про ряд Тейлора

Теорема 2. Для того щоб ряд Тейлора (2) збігався до функції f(x) в інтервалі (х0-R;x0+R), тобто

необхідно і додатно, щоб в цьому інтервалі функція мала похідні всіх порядків і залишковий член її формули Тейлора прямувала до нуля при для всіх х з цього інтервалу:

(3)

Відомо, що для функції, яка має похідні всіх порядків, справедлива формула Тейлора

(4)

де

(5)

- залишковий член формули Тейлора у формулі Лонгранжа.

Якщо позначити n -у частину суму ряду (2) через Sn(x), то формула (4) матиме вигляд

(6)

Нехай f(x) - сума ряду, тобто

тоді з формули (6) випливає умова (3). Навпаки, якщо виконується умова (3), то з формули (6) випливає рівність .

Таким чином, функцію f(x) можна розкласти в ряд Тейлора в інтервалі (х0-R;x0+R) тоді і тільки тоді, коли виконуються такі умови: 1). Вона має похідні всіх порядків; 2). Залишковий член формули Тейлора (5) прямує до нуля при n→0 і всіх (х0-R;x0+R).

Безпосередня перевірка цих умов нерідко виявляється непростою задачею. Доведемо теорему, яка дає досить прості достатні умови розкладання функції в ряд Тейлора.

Теорема 3. Якщо функція f(x) в інтервалі (х0-R;x0+R) має похідні всіх порядків та існує число М>0 таке, що

(7)

де , то функцію f(x) можна розкласти в ряд Тейлора.

Відповідно до теореми 2 досить перевірити умову (3). В силу нерівностей (7) залишковий член формули Тейлора (3) задовольняє нерівність (7)

(8)

Побудуємо степеневий ряд

. (9)

оскільки

то за ознакою Д'Амламбера ряд (9) збіжний на всій числовій осі.

Для збіжного ряду


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат