Зворотний зв'язок

Використання графічного способу розв’язанні математичних задач

Відповідь: залишилося 240 мішків борошна.

На основі графічного аналізу задачі одержуємо й інший спосіб розв’язання задачі: 706—(604—138) = = 706 — 466 = 240 (міш.)

Відповідь: залишилося 240 мішків борошна.

Постійно зростає роль графічної моделі як важливого резерву знаходження різних схованих залежностей при розв’язанні задач. На практиці навчання велику увагу приділяють розв’язанні таких задач різними способами і виявленню найбільш раціонального.

Наведемо кілька прикладів.

1. На змаганнях один хлопчик пробіг 320 м, інший на 130 м більше першого, а третій на 180 м менше ніж пробігли перший і другий разом. Скільки метрів пробіг третій хлопчик?

Це, по суті справи, геометрична задача, як і попередня, хоча за формою являє собою арифметичну.

I спосіб

1) 320 + 130 = 450 (м)

2) 450 + 320 = 770 (м)

3) 770 — 180 = 590 (м)

Відповідь: 590 м.

II спосіб

1) 320 + 130 = 450 (л)

2) 450 — 180 = 270 (м)

3) 320 + 270 = 590 (м)

Відповідь: 590 м.

III спосіб

1) 180 — 130 = 50 (м)

2) 320 — 50 = 270 (м)

3) 320 + 270 = 590 (м)

Відповідь: 590 м.

IV спосіб

1) 320 + 320 = 640 (м)


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат