Похідна за напрямом
Для характеристики зміни скалярного поля в заданому напрямі вводять поняття похідної за напрямом.
Область простору кожній точці М якої поставлено у відповідність значення деякої скалярної величини, називають скалярним полем.
Нехай задано скалярне поле . Візьмемо в ньому точку і проведемо з цієї точки вектор , напрямні косинуси якого .
На векторі на відстані від його початку візьмемо точку .
Обчислимо тепер приріст функції при переході від точки М до точки в напрямі вектора :
Якщо існує границя відношення при .то цю границю називають похідною функції u(x;y;z) в точці M(x;y;z) за напрямом вектора і позначають , тобто
Виведемо формулу для обчислення похідної за напрямом . припустимо , що функція u(x;y;z) диференційована в точці M. Тоді її повний приріст в цій точці можна записати так:
Перейшовши до границі при ,дістанемо формулу для обчислення похідної за напрямом
З формули 1 випливає .що частинні похідні є окремими випадками похідної за напрямом . Дійсно , якщо збігається із одним із ортів то похідна за напрямом збігається з відповідною частинною похідною. Наприклад, якщо , то , тому
.
Подібно до того як частинні похідні характеризують швидкість зміни функції в напрямі осей координат, так і похідна показує швидкість зміни скалярного поля u(x;y;z) в точці M(x;y;z) за напрямом вектора .
Абсолютна величина похідної відповідає значенню швидкості, а знак похідної визначає характер зміни функції u(x;y;z) в напрямі (зростання чи спадання).
Очевидно, що похідна за напрямом , який протилежний напряму , дорівнює похідній за напрямом , взятій з протилежним знаком .
Справді, при зміні напряму на протилежний кути зміняться на, тому
.
Фізичний зміст цього результату такий: зміна напряму на протилежний не впливає на значення швидкості зміни поля , а тільки на характер зміни поля . Якщо, наприклад, в напрямі поле зростає , то в напрямі воно спадає , і навпаки .
Якщо поле плоске , тобто задається функцією u(x;y), то напрям вектора цілком визначається кутом . Тому поклавши в формулі 1 , дістанемо
Приклад:
Знайти похідну функції в точці A(1;2;-1) за напрямом від точки А до точки B(2;4;-3). З'ясувати характер зміни поля в даному напрямі.
Знаходимо вектор і його напрямні косинуси:
Тепер обчислимо значення частинних похідних в точці А:
Оскільки , то задана функція в даному напрямі зростає.
План