Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа поверхні
План
•Довжина дуги кривої в декартових і полярних координатах
•Площа поверхні
•Площа поверхні обертання
•Площа циліндричної поверхні
10.3. Довжина дуги
Це питання для кривої , заданої рівнянням , вже розглядалося в п.9.1. Там була знайдена формула
Якщо крива задана параметрично, тобто у вигляді то
Для просторової кривої, заданої параметрично , довжина дуги обчислюється за формулою
аналогічно формулі. Виведення цієї формули базується на розгляді елемента дуги, кінці якої збігаються з кінцями діагоналі паралелепіпеда, а саме, діагональ є хордою елемента дуги.
У випадку задання кривої в полярній системі координат, матимемо
Пропонується вивести цю формулу, узявши до уваги, що рівняння кривої в полярних координатах можна записати як параметричні з параметром q :
і використавши формулу.
Приклад 1. Обчислити довжину кривої, заданої рівнянням .
Р о з в ‘ я з о к. Досить обчислити довжину дуги, що обмежує зверху заштриховану на рис.10.7 фігуру, а потім помножити її на 8. Користуючись формулою, одержимо
10.4. Площа поверхні
10.4.1. Площа поверхні обертання
Довжина дуги, що обмежує смужку зверху,
Ця дуга в разі обертання утворить поверхню обертання, площа якої дорівнюватиме бічній поверхні конуса, який має висоту, а радіуси основ його . Тоді площа поверхні цього конуса нескінченно малої висоти
Нескінченно малою вищого порядку нехтуємо і в результаті одержимо звідки
10.4.2. Площа циліндричної поверхні
На рис. 10.10 зображено циліндричну поверхню з твірними, паралельними осі . Нехай ця поверхня задана рівняннями
Виділивши смужку так, як показано на рис, знайдемо її площу