Зворотний зв'язок

Елементи теорії графів

1. Основні поняття

1.1. Вершини і ребра

Історично перша робота – Ейлер, розв. задачі про Кенігсбергські мости.

Графи там, де є елементи (вершини) та зв'язки між ними (ребра). Приклади – географічні схеми, комбінаційні схеми з функціональних елементів, залежність між дисциплінами навчальних планів, бінарні відношення тощо.

Множина вершин V і множина ребер E. Пари вершин (упорядковані) і неупорядковані пари – VV і [VV]. Функція f з E у VV або [VV]. Якщо F різнозначна, то маємо граф, якщо нерізнозначна – мультиграф. Петлі – (v, v) чи [v, v].

Інцидентність вершин і ребер (incidence – сфера дії), суміжність (сусідство) вершин. Степінь вершини. Сума степенів вершин і кількість ребер.

Частини графа, підграфи та суграфи. Доповнення графа.

Ізоморфізм графів. Автоморфізми.

Дводольний, повний, регулярний, фактор.

Паросполучення. Досконале, максимальне.

Задачі

****Про суму степенів вершин і кількість ребер.

ГС1: 1, 3, 4, 25(1, 2)

****Про ізоморфізм – на картинках, матрицях суміжності та ін.

ГС1: 2, 14(1), 15(1), 16, 18', 28,

****Про паросполучення. ГС1: 44

1.2. Подання графів і мультиграфів

Подання графів (не мультиграфів) – матриця суміжності, список ребер (пар вершин), структура суміжності – список вершин із списками їх сусідів ("ущільнена" матриця).

Подання мультиграфів – матриця інцидентності.

Задачі

****Малюнки матриці, списки, структури тощо.

РНД8.8: 24

Липский Довести, що при будь-якому неорієнтованому графі матриця суміжності B виражається через матрицю інцидентності A таким чином:


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат