Критерій х2 Пірсона
Критерій незалежності хі-квадрат Пірсона призначений для перевірки гіпотези про незалежність двох ознак, що задають рядки і стовпці таблиці спряженості. Статистика цього критерію
де сума береться по всіх клітках таблиці спряженості. Вона збігається зі статистикою критерия согласия хи-квадрат*, специфіка складається лише в способі обчислення очікуваних зустрічальностей: eij=ricj/N, де ri – сума зустрічальностей у i-й рядку, cj – сума зустрічальностей у j-м стовпці.
Критерій згоди хі-квадрат використовується для перевірки гіпотези про збіг емпіричного і теоретичного розподілів дискретних випадкових величин. Критерій ґрунтується на порівнянні спостережених і очікуваних (теоретичних) встречаемостей. Статистика критерия дорівнює сумі квадратів різниць між спостереженими й очікуваними зустрічальностями, ділених на очікувані зустрічальності , де oi – спостережена зустрічальність i-й градації, а ei – її очікувана зустрічальність. Зверніть увагу: значення статистики залежить від обсягу вибірки.
Розглянемо одну з основних задач математичної статистики -задачу про перевірку правдоподібності гіпотез. Перед дослідником завжди поставав питання: як установити, чи суперечать досвідчені дані гіпотезі про те, що СВ_Х розподілена за деяким законом. Для відповіді на це питання користаються так називаними критеріями згоди. Одним з таких критеріїв є критерій c 2 - Пірсона. У чому його суть? Пірсон запропонував розрахувати теоретичні частоти реалізації СВ_Х, що підкоряється гіпотезі, що перевіряється, про закон розподілу , і порівняти їх з емпіричними за визначеним критерієм. Якщо критерій задовольняється, то гіпотеза про передбачуваний закон розподілу СВ_Х не відкидається, якщо критерій не задовольняється, те гіпотеза про передбачуваний закон розподілу СВ_Х відкидається і дослідник повинний висувати нову гіпотезу про закон розподілу СВ_Х (тобто переглянути свої погляди на природу досліджуваного явища).
Припустимо, що зроблено n незалежних досвідів, у кожнім з який СВ_Х прийняла визначене значення. Ці значення занесені в таблицю:
Xx1x2...xk-1xk
nn1n2...nk-1nk
P*p1*p2*...pk-1*pk*
Тут – частота події. Ми висуваємо гіпотезу Н0, що складається в тім, що СВ_Х має розподіл
Xx1x2...xk-1xk
nn1’n2’...nk-1’nk’
P*p1*p2*...pk-1*pk*
Щоб перевірити правдоподібність цієї гіпотези, треба вибрати якусь міру розбіжності статистичного розподілу з гіпотетичним. Як міру розбіжності береться сума квадратів відхилення статистичних імовірностей від гіпотетичних, узятих з деякими "вагами" сj: Коефіцієнти сj уводяться тому, що відхилення, що відносяться до різних значень pi, не можна вважати рівноправними: те саме по абсолютній величині відхилення може бути малозначним, якщо імовірність pj велика, і дуже помітним, якщо вона мала. Пірсон довів, що якщо прийняти , те при великому числі досвідів n закон розподілу величини R має дуже прості властивості: він практично не залежить від закону розподілу СВ_Х и мало залежить від числа досвідів n, а залежить тільки від числа значень випадкової величини (СВ_Х) k і при збільшенні n наближається до розподілу c 2. При такому виборі коефіцієнтів cj міра розбіжності R звичайно позначається c 2набл: чи з обліком того, що , одержимо.
Величина R підкоряється розподілу c 2 і залежить від параметра r, називаного "числом ступенів волі". При даному критерії число ступенів волі дорівнює числу значень СВ_Х k мінус число незалежних умов ("зв'язків"), накладених на частоти р*.
Проста лінійна кореляція (Пірсона r). Кореляція Пірсона (далі називана просто кореляцією) припускає, що дві розглянуті перемінні обмірювані, принаймні, у интервальной шкале (см. Элементарные понятия статистики). Вона визначає ступінь, з яким значення двох перемінних "пропорційні" один одному. Важливо, що значення коефіцієнта кореляції не залежить від масштабу виміру. Наприклад, кореляція між ростом і вагою буде однієї і тієї ж, незалежно від того, проводилися виміри в дюймах і чи фунтах у сантиметрах і кілограмах. Пропорційність означає просто лінійну залежність. Кореляція висока, якщо на графіку залежність "можна представити" прямою лінією (з позитивним чи негативним кутом нахилу).