Зворотний зв'язок

Аналітична геометрія. Вектори

Реферат на тему:

Аналітична геометрія. Вектори

Означення. Вектором (n-вимірним вектором, геометричним вектором) називається впорядкований набір чисел .

Означення. Вектори називаються рівними, якщо співпадають їхні розмірності та всі компоненти.

Приклад. Вектори (1;2;3) та (1;3;2) рівними не є, незважаючи на те, що множина {1;2;3} дорівнює множині {1;3;2} .

Означення. Нульовим вектором називається вектор .

Означення. Добутком вектора на число k називається вектор .

Означення. Сумою векторів та називається вектор .

Означення. Скалярним добутком векторів та називається число .

Означення. Модулем (довжиною) вектора називається число .

Кут j між векторами та задається формулою . При n=2 ця формула співпадає зі шкільною формулою для кута між векторами на площині.

Вектори називаються ортогональними, якщо їхній скалярний добуток дорівнює нулю. Це виконується за умови cosj=0 , тобто при j=900.

Розглянемо прямокутну систему координат на площині та вектори і на цій площині (рис. 2.1). Ці вектори (вони ортогональні і їхня довжина дорівнює одиниці) називають ортами.

y

j

i x

Рис. 2.1.

Розглянемо також просторову систему координат з ортами , та (рис. 2.2).

z

k

i j y

x

Рис. 2.2.

Виконується така теорема: Кожен вектор в n-вимірному просторі єдиним способом розкладається по координатних осях.

Зокрема, в тривимірному просторі


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат