Лінійні рівняння першого порядку
Реферат на тему:
Лінійні рівняння першого порядку
1. Загальна теорія
Рівняння, що є лінійним відносно невідомої функції та її похідної, називається лінійним диференціальним рівнянням. Його загальний вигляд такий:
.
Якщо , тобто рівняння має вигляд
,
то воно зветься однорідним. Однорідне рівняння є рівнянням зі змінними, що розділяються і розв’язується таким чином:
Нарешті .
Розв’язок неоднорідного рівняння будемо шукати методом варіації довільних сталих (методом невизначених множників Лагранжа). Він складається в тому, що розв’язок неоднорідного рівняння шукається в такому ж вигляді, як і розв’язок однорідного, але вважається невідомою функцією від , тобто і . Для знаходження підставимо у рівняння
.
Звідси
Проінтегрувавши, одержимо
.
І загальний розв’язок неоднорідного рівняння має вигляд
Якщо використовувати початкові умови , то розв’язок можна записати у формі Коші:
.
2. Рівняння Бернуллі
Рівняння вигляду
називається рівнянням Бернуллі. Розділимо на і одержимо
Зробимо заміну: .
Підставивши в рівняння, отримаємо
Одержали лінійне диференціальне рівняння. Його розв’язок має вигляд
3. Рівняння Рікатті