Карл Фрідріх
Як відомо, ще за часів Евкліда (III ст. до н. е.) задача про поділ кола була предметом досліджень багатьох учених, причому ще тоді було доведено, що за допомогою циркуля і лінійки можна побудувати правильні многокутники, число сторін яких дорівнює: 3×2n, 4×2n, 5×2n, 15×2n, , де n – будь-яке ціле число натурального ряду.
К. Гаусс довів, що за допомогою циркуля та лінійки можна побудувати такий правильний п-кутник, число сторін якого виражається формулою п=22r+1, де r – довільне ціле число або нуль. Якщо r=0, то п=3; r=1, то п=5, r=2, то п=17.
Побудови трикутника і п'ятикутника були відомі ще давнім грекам, але Гаусс першим здійснив побудову правильного 17-кутника.
Дослідження Гаусса про поділ кола мали велике значення не лише для розв'язання цієї складної задачі. Мабуть, ще важливішим було те, що тут він заклав основи загальної теорії так званих алгебраїчних рівнянь, тобто рівнянь виду де коефіцієнти рівняння – комплексні числа.Дуже важливе значення має доведена Гауссом у 1799 р. основна теорема алгебри про існування кореня алгебраїчного рівняння. На основі цієї теореми доведено таку властивість рівнянь: «Алгебраїчне рівняння має стільки коренів дійсних чи комплексних, скільки одиниць у показнику його степеня». За працю, в якій доведено ці теореми, Гаусс дістав звання приват-доцента.
У першій частині праці «Арифметичні дослідження» Гаусс глибоко проаналізував питання про так звані «квадратичні лишки» і вперше довів важливу теорему з теорії чисел, яку він назвав «золотою теоремою» про «квадратичний закон взаємності». Можна без перебільшень сказати, що теорія чисел, як наука, почала своє справжнє існування саме з досліджень Гаусса. «Арифметичні дослідження» Гаусса в математичній науці створили цілу епоху, а Гаусс був визнаний найбільшим математиком світу.
У 1807 р. йому було надано звання екстраординарного, а пізніше й ординарного професора Геттінгенського університету. В той же час його було призначено директором Геттінгенської обсерваторії.
В галузі астрономії Гаусс працював близько 20 років. У 1801 р. італійський астроном Піацці відкрив між орбітами Марса і Юпітера маленьку планету, яку він назвав Церерою. Спостерігав він цю планету протягом 40 днів, але Церера швидко наближалася до Сонця і зникла в його яскравих променях. Намагання Піацці відшукати її знову виявилися марними. Гаусс зацікавився цим явищем і, вивчивши матеріали спостережень Піацці, установив, що для визначення орбіти Церери досить трьох її спостережень. Після чого треба було розв'язати рівняння 8-го степеня, з чим Гаусс блискуче справився: орбіта планети була обчислена і сама Церера знайдена. Таким самим способом Гаусс обчислив орбіту іншої малої планети — Паллади. У 1810 р. французький астрономічний інститут за розв'язання задачі про рух Паллади присудив йому золоту медаль. У цей період учений написав і свою фундаментальну працю «Теорія руху небесних тіл, які обертаються навколо Сонця по конічних перерізах» (1809 р.).
Важливі праці створив Гаусс і з аналізу нескінченно малих величин.
Гаусс цікавився і геометрією. Окремі питання, як, наприклад, найважливіша проблема геометрії – проблема V постулату Евкліда – привертали його особливу увагу. У своїх міркуваннях він ішов шляхами, схожими па ті, які проробив Лобачевський, але не опублікував жодної сторінки. У листі до математика Бесселя Гаусс писав: «Певне, я ще не скоро зможу обробити свої широкі дослідження з цього приводу так, щоб їх можна було опублікувати. Можливо, навіть, що я не зважуся на це протягом усього мого життя, тому що боюсь крику беотійців, який піднімається, коли я висловлюю свої погляди».
Гаусс ознайомився з результатами досліджень Лобачевського за невеликою брошурою «Геометричні дослідження з теорії паралельних ліній», написаною німецькою мовою і виданою у 1840 р. Він зацікавився цією працею і в свої 62 роки вирішив вивчити російську мову, щоб мати можливість читати твори Лобачевського в оригіналі. У листах до своїх друзів Гаусс з великою похвалою говорив про досягнення Лобачевського. Він писав, що праця Лобачевського містить основи тієї геометрії, яка могла б бути і була б цілком послідовною, якби геометрія Евкліда не була правильною. Він писав також, що вже 54 роки (з 1792 р.) має такі самі переконання. Самому Лобачевському Гаусс власноручно написав листа, в якому повідомив російського вченого, що його обрали членом-кореспондентом Геттінгенського математичного вченого товариства.
1830-1840 роки Гаусс присвятив теоретичній фізиці. Його дослідження в цій галузі значною мірою були результатом тісного спілкування і сумісної наукової роботи з В. Вебером.