Теорема Перрона
Оскілки , то існує S-1. Перепишемо рівняння та у матричній формі
або .
Відкіля і взагалі
Знайдемо границю Pn:
Твердження 1 теореми доведено.
Доведемо тепер, що рядки матриці однакові. Для цього обчиcлимо .
Оскільки , то Ми бачимо, що рядки матриці - однакові. Доведемо тепер, що їх елементи додатні. Для цього врахуємо отриману раніше залежність
Для того, щоб довести треба довести, що , треба довести, що та .
Маємо
,
, тому що p>0 і q >0
Теорема доказана.
Зауваження1 В процесі доведення ми вивели, що для 2х2 матриць
Зауваження2 Позначимо рядки граничної матриці . Тоді можна знайти з умови:
Доведення.
Оскільки
Зівдки
Або
Звідки
Зокрема, для 2х2 матриці
Умовою рядок визначається однозначно, що для 2х2 матриці можна перевірити.
В роботі дані для матриць другого порядку елементарні доведення таких фундаментальних теорем теорії невід’ємних матриць. як теореми Перрона, Перрона-Фробеніуса, Маркова.
У відомій нам літературі повне доведення цих теорем дається для загального випадку матриць n-го порядку з використанням неелемнтарних теорем і методів. А математичний апарат, який використовується в даній роботі, це: аналіз поведінки розв’язків квадратного рівняння та розв’язків системи двох лінійних рівнянь в залежності від коефіцієнтів.