Зворотний зв'язок

Числення предикатiв. Теорiя першого порядку

Числення предикатiв, тобто формальна теорiя предикатiв будується за вищенаведеною класичною схемою побудови формальних (математичних) теорiй.

1. Алфавiт числення предикатiв, тобто множина вихiдних символiв складається з предметних (iндивiдних) змiнних x1,x2,..., предметних (iндивiдних) констант a1,a2,..., предикатних букв P11, P21,...,Pkj,... i функцiональних букв f11,f21,...,fkj,..., а також знакiв логiчних операцiй , , , , кванторiв ,  i роздiлових знакiв ( , ) , , (кома).

Верхнi iндекси предикатних i функцiональних букв вказують на число аргументiв (арнiсть), а нижнi використовують для звичайної нумерацiї букв.

2. Поняття формули означають у два етапи.

Спочатку означають поняття терма.

а). Предметнi змiннi i предметнi константи є термами.

б). Якщо f n - функцiональна буква, а t1,t2,...,tn - терми, то f n(t1,t2,...,tn) - терм.

в). Iнших термiв, крiм утворених за правилами а) i б), немає.

Вiдтак, формулюють означення формули.

а). Якщо Pn предикатна буква, а t1,t2,...,tn - терми, то Pn(t1,t2,...,tn) - формула, яка називається елементарною. Усi входження предметних змiнних у формулу Pn(t1,t2,...,tn) називають вiльними.

б). Якщо F1, F2 - формули, то вирази (F1), (F1F2), (F1F2), (F1F2) теж є формулами. Усi входження змiнних, вiльнi у F1 i F2, є вiльними й в усiх чотирьох видах формул.

в). Якщо F(x) - формула, що мiстить вiльнi входження змiнної x, то xF(x) i xF(x) - формули.

У цих формулах усi входження змiнної x називають зв’язаними. Входження решти змiнних у F залишаються вiльними.

г). Iнших формул, нiж побудованих за правилами а), б) i в), немає.

Зауваження. Функцiональнi букви i терми введено в означення для потенцiйних потреб рiзноманiтних конкретних прикладних числень предикатiв. У прикладних численнях предметна область M є, як правило, носiєм певної алгебраїчної системи, тому в численнi доцiльно мати засоби для опису операцiй i вiдношень, заданих на M. Чисте числення предикатiв будується для довiльної предметної областi; структура цiєї областi i зв’язки (вiдношення) мiж її елементами не беруться до уваги, тому в ньому вводити функцiональнi букви i терми не обов’язково.

3. Аксiоми числення предикатiв утворюють двi групи аксiом.

а). Першу групу складають аксiоми довiльного числення висловлень (наприклад, можна взяти будь-яку з вищенаведених двох систем A1-A10 або S1-S3). Як правило, цi аксiоми є схемами аксiом.

б). У другу групу входять так званi предикатнi аксiоми:

P1. xF(x)F(y),

P2. F(y)xF(x).


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат