ПОШУК, СОРТУВАННЯ ТА ПОНЯТТЯ СКЛАДНОСТІ У ПРОГРАМУВАННІ
8 9 10 11 12
Елементи цієї піраміди будемо називати вузлами.
Між вузлами проведемо стрілки: від 1 – до 2 та 3, від 2 – до 4 та 5, від 3 – до 6 та 7 тощо, тобто від кожного вузла k до 2k та 2k+1, де k
Піраміду можна розглядати як дерево, гілки якого – стрілки від батьків до синів. Вершина піраміди називається коренем дерева.
Припустимо тепер, що значення елементів масиву розташовано так, що значення кожного елемента-батька не менше значень його синів:
A[1] A[2] та A[1] A[3], A[2] A[4] та A[2] A[5] тощо.
Отже, за кожного k=1, 2, … , n div 2
A[k] A[2*k] та A[k] A[2*k+1] (17.2)
(за парного n елемент A[n div 2] має лише одного сина A[n]). Наприклад,
30
12 30
12 5 29 2
11 10 3 2 28 27
Цій піраміді відповідає послідовне розташування <30, 12, 30, 12, 5, 29, 2, 11, 10, 3, 2, 28, 27>.
Очевидно, що кожний елемент має значення, найбільше в тій піраміді, де він є вершиною. Наприклад, A[2] має значення, найбільше серед елементів із індексами 2, 4, 5, 8, 9, 10, 11. Зокрема, A[1] має значення, найбільше серед усіх елементів.
Якщо поміняти місцями значення A[1] і A[n], то елемент A[n] матиме найбільше значення. Про нього "можна забути" та зосередитися на сортуванні A[1], A[2], ... , A[n-1]. Зрозуміло, що умова A[1] A[2], A[1] A[3] після обміну може виявитися порушеною. Для її відновлення треба обміняти місцями значення A[1] та того з A[2], A[3], чиє значення максимальне. Нехай це буде A[3]. В останньому прикладі після обміну значень A[1] і A[12] на вершині піраміди значення 27, і 27<30, тобто A[1]
Після відновлення умови (17.2) можна буде обміняти значення першого елемента з передостаннім, "забути" про нього, знову відновити умову, знову загнати перше значення в кінець тощо.
Нехай процедура bld(A, n) задає початкову перестановку значень масиву таким чином, що виконується умова (17.2), а процедура reorg(A, i, k) – її відновлення у частині масиву A[i], … , A[k]. Тоді за дії означень (17.1) сортування задається процедурою Treesort:
procedure Treesort ( var a : ArT; n : Indx );
var j : Indx;