Зворотний зв'язок

ЗНАЙОМСТВО З СОРТУВАННЯМ ФАЙЛІВ

1. Збалансоване злиття

В реальних задачах виникають послідовності, що зберігаються в файлах і не можуть уміщатися в оперативній пам'яті у вигляді масивів. Наприклад, у великому місті може бути кілька мільйонів абонентів телефонної мережі. Звичайно, для швидкого пошуку дані про абонентів мають бути відсортованими. Виникає задача сортування файлів за умови, що файли цілком не можна подавати в оперативній пам'яті. Таке сортування називається зовнішнім.

Один із найпростіших методів зовнішнього сортування має назву збалансованого злиття. Розглянемо його ідею.

Нехай F1 є файлом однотипних значень. Відрізком у ньому називається послідовність елементів, упоpядкована за зростанням значень, яка не є частиною іншої упорядкованої послідовності. Наприклад, у послідовності <2, 8, 3, 7, 6, 5, 3, 4, 1> є шість відрізків: <2, 8>, <3, 7>, <6>, <5>, <3, 4>, <1>.

Спочатку відpізки по черзі копіюються в допоміжні файли F3 і F4. Це первинне копіювання називається розподілом. У нашому прикладі маємо <2, 8, 6, 3, 4> в F3 і <3, 7, 5, 1> в F4.

Потім паpи перших, других тощо відpізків файлів F3 і F4 зливаються в довші відpізки та по черзі копіюються в F1 і допоміжний файл F2. У нашому прикладі маємо <2, 3, 7, 8, 1, 3, 4> в F1 та <5, 6> в F2. Цей крок називається злиттям. Потім паpи відpізків файлів F1 і F2 зливаються у файли F3 і F4 тощо доти, поки в результаті чергового злиття не утвориться єдиний відрізок.

Якщо перед черговим кроком злиття було M відрізків, то після нього їх стає не більше, ніж  (M+1)/2 . Звідси випливає, що таких кроків не більше  log2N , де N – кількість елементів файла. Оскільки на кожному кроці злиття відбувається переписування всіх N елементів у інші файли, то складність такого алгоритму сортування можна оцінити як O(Nlog2N).

Можна збільшити кількість допоміжних файлів. Наприклад, якщо зливати не дві, а три послідовності, то кількість відрізків буде зменшуватися не менше, ніж утричі, тому кроків злиття буде не більше  log3N , що в log23, тобто приблизно в півтора раза менше. Для цього будуть потрібні 5 допоміжних файлів.

Взагалі, використання 2k-1 допоміжних файлів вимагатиме не більше  logkN кроків злиття. Отже, "розширення фронту" злиття є одним із джерел прискорення сортування.

З іншого боку, чим довшими будуть відрізки в початковому файлі, тим менше кроків злиття буде потрібно. Звідси створення початкового файла з якомога довшими відрізками також може суттєво прискорити сортування. Саме цю ідею ми розглянемо докладніше в наступному підрозділі.

2. Вибір із заміщенням

Тут ми опишемо створення файла з якомога довшими відрізками. Скористаємося методом, що належить Сьюворду та Думі, із удосконаленням Фрейзера та Уона (посилання див. у книзі [Кн3]). Цей метод грунтується на використанні дерева сортування.

Нехай початковий файл містить значення упорядкованого типу T. За цим файлом будується результатний файл із неспадаючими відрізками. При побудові використовується масив A із MX елементів. Нехай із початкового файла в цей масив прочитано n елементів, n MX. Як і в алгоритмі пірамідального сортування (підр.17.4.2), будемо дивитися на масив як на дерево. Елемент масиву розглядається як вузол дерева, і кожний вузол, індекс якого k, є батьком вузлів із індексами 2k та 2k+1, де k
Нехай значення масиву розташовано таким чином, що значення кожного елемента-батька не більше значень елементів-синів, тобто за k=1, 2, … , n div 2 справджується

A[k]  A[2*k] та A[k]  A[2*k+1] (18.1)


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат