Основи двійкової арифметики. Порозрядні логічні операції Булівські операції
З наведених прикладів 1 і 2 видно, що функція h1(x, y, z) задається формулою ((x, y), (y, z)), або в інфіксному записі (xy)(yz). Аналогічно функція h2(x, y) задається формулою ((x, y), (y, x)), або (xy)(yx). Як бачимо, обидві функції задаються формулами з тими самими функціональними символами , , , тобто є суперпозиціями цих функцій.
Наостанок наведемо узгодження, які склалися в математиці й дозволяють у формулах з функціональними символами , , , , , , |, записувати не всі необхідні дужки. ****
Суттєві та несуттєві змінні
Розглянемо поняття суттєвої залежності функції від її змінних. Почнемо з прикладів: значення функції h2(x, y) з прикладу 2 на кожному з наборів збігаються зі значеннями x. Отже, зміна значення y не впливає на значення функції, тобто вона фактично не залежить від y. В той час як зміна значення x веде до зміни значення h2. Уточнимо ці міркування наступними означеннями.
Означення. Змінна xi функції f(n)(x1, x2, …, xi, …, xn) називається суттєвою, якщо існує хоча б одна пара наборів значень змінних
(1, 2, …, i-1, 0, i+1, …, n) і (1, 2, …, i-1, 1, i+1, …, n),
така, що
f(n)(1, 2, …, i-1, 0, i+1, …, n) f(n)(1, 2, …, i-1, 1, i+1, …, n).
Змінна xi називається несуттєвою у противному разі, тобто коли за всіх можливих пар наборів значень
(1, 2, …, i-1, 0, i+1, …, n) і (1, 2, …, i-1, 1, i+1, …, n)
мають місце рівності:
f(n)(1, 2, …, i-1, 0, i+1, …, n) = f(n)(1, 2, …, i-1, 1, i+1, …, n).
Наприклад, неважко переконатися, що всі змінні функції h1 з прикладу 1 є суттєвими. Функція h2 має суттєву змінну x і несуттєву y. Функція двох змінних, задана як вектор (1111), не має суттєвих змінних.
Еквівалентні формули та закони
Одна й та сама бульова функція задається, взагалі кажучи, багатьма різними формулами. Наприклад, неважко переконатися, що формули xy і xy обидві задають функцію (1101). Таким чином, можна говорити про еквівалентність цих двох формул.
Означення. Нехай **** Формули 1 і 2 називаються еквівалентними, якщо
Бульові функції та комбінаційні схемиІ-елементАБО-елемент-елементНЕ-елемент
a a a
b r b r b r a r
r = ab r = ab r = ab r = a
Розглянемо реалізацію бульових функцій у вигляді комбінаційних схем. Найпростішими з них є логічні елементи, відповідні бульовим функціям: кон'юнкції , диз'юнкції , додавання за модулем 2 та заперечення . Вони позначаються й зображаються таким чином: