Густина твердих горючих копалин
У літературі широко розглянуті закономірності зміни електроопору електризації, діелектричної проникності вугілля, а також результати дослідження вугілля методами електронного парамагнітного резонансу ЕПР і ядерного магнітного резонансу ЯМП.
Електризація твердих матеріалів може бути зумовлена електричними полями, механічними, фізичними і хімічними процесами. Аналізуючи дані природної електрозарядженості подрібненого вугілля, потрібно зазначити, що вугілля при подрібненні заряджається біполярно і асиметрично.Вивчення електризації вугілля при його дробленні і розпилюванні 170 основних шахтопластів Донецького, Кузнецького і Карагандинського басейнів, представлених всіма марками кам'яного вугілля від Д до А, з природною вологістю 0,2-9,9 %, зольністю 1,1-55,5 % і виходом летких речовин 2,5-41,9% дозволило всебічно вивчити залежність електрофізичних властивостей від фізико-хімічних параметрів вугілля.
Електрозарядженість росте із збільшенням дисперсності вугільних частинок, що пояснюється підвищенням питомої поверхні електрично заряджених частинок. Збільшення вмісту мінеральних домішок у вугіллі приводить до зменшення зарядженості потоку аерозолю. Зростання числа парамагнітних центрів пропорційне підвищенню заряду на поверхні вугілля, що добре показано на прикладі жирного вугілля Донбасу. Вплив окисненості вугілля неоднозначний і залежить від ступеня вуглефікації.
Залежність питомої напруженості електричного поля вугільного пилу від ступеня вуглефікації носить параболічний характер з максимумом для вугілля середнього ступеня вуглефікації, який відповідає вмісту вуглецю 90 %. Як вказувалося вище, таке вугілля має мінімальний показник мікротвердості за Віккергу і максимальний показник здатності до подрібнення за Хардгрове. Це свідчить про те, що електризація поверхні частинок вугілля при руйнуванні є функцією їх структури. Диспергування вугілля приводить до виникнення потоку емісії електронів високої енергії (ЕЕВЕ), параметри якої залежать від структурних особливостей вугілля, що руйнується. Максимальні значення потоку ЕЕВЕ відповідають також вугіллю середнього ступеня вуглефікації, причому для вугілля марок Ж і К характерна також "післяемісія" (емісія після припинення механічного впливу), тривалість якої становить 1-4 хв. Зміна потоку ЕЕВЕ в ряді вуглефікації корелює з електризацією частинок для вугілля Донецького басейну. Оскільки електрони мають негативний заряд, то їх інтенсивна емісія з поверхні вугілля при диспергуванні пояснює позитивну електрозарядженість вугільних частинок.
Останнім часом робляться спроби використати електрофізичні властивості вугілля для їх генетичної промислової класифікації.
Як вказувалося вище, відновленість вугілля визначають непрямими хімічними, фізичними і петрографічними методами. Запропоновано прямий електрохімічний метод, основу якого складають вимірювання масштабів реакцій окиснення і відновлення органічної маси вугілля реагентами, що утворюються при пропущенні постійного електричного струму через електрохімічний осередок, заповнений пробою, що досліджується, змочений електролітом, а також реакцій окиснення і відновлення, що протікають за рахунок електронного обміну на електродах у разі молодого кам'яного вугілля.
Методичною основою для такого підходу послужили передумови, що, починаючи з газового вугілля, що добре спікається і, кінчаючи пісним, відновлене вугілля має більшу реакційнуздатність по відношенню до окиснюючих агентів, ніж маловідновлене, а довгополуменеве і молоде газове відновлене вугілля мають знижену окиснюваність молекулярним киснем внаслідок меншого вмісту в них кисеньвмістких функціональних груп в порівнянні з маловідновленим.
Для розподілення антрацитів на групи рекомендовано показник критичної напруженості електричного поля Ек, який визначається зняттям вольтамперної характеристики антрацитів на зразках монолітах. У поєднанні з показниками ступеня вуглефікації антрацитів він дозволяє виділяти антрацити, придатні для виробництва термографіту з унікальними електричними і антифрикційними властивостями.
Між металами з провідністю 104-105Ом-1см-1 і діелектриками з провідністю 10-10-10-15Ом-1см -1 знаходиться великий клас напівпровідників з провідністю 10-2-10-10Ом-1см-1. До останніх відносять оксиди, сульфіди, селеніди, до них же можна віднести антрацит, буре і кам'яне вугілля, горючі сланці.
На зміну електричного опору більше усього впливає температура. При зміні температури від 0 до 900 0С питомий опір вугілля звичайно змінюється від 109-1012 Ом см до 10 Ом см.
Від 0 до 200 0С опір кам'яного вугілля знижується поступово, опір бурого вугілля і горючих сланців від 0 до 50-100 0С різко знижується, а потім до 200 0С збільшується. Цей перегин кривої зумовлений наявністю в останніх великої кількості вологи, яка до 50-1000С сприяє збільшенню провідності, а при більш високих температурах по мірі видалення вологи опір зростає, досягаючи найбільшого значення при температурі біля 200 0С. друга ділянка від 200 до 800 0С характеризується найбільш різким зниженням опору, що змінюється по прямолінійній залежності.